[1] Xie, Y. Y. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nature Nanotechnology 15, 125-130 (2020). doi: 10.1038/s41565-019-0611-y
[2] Xiao, Y. et al. Multi-junction cascaded vertical-cavity surface-emitting laser with a high power conversion efficiency of 74%. Light: Science & Applications 13, 60 (2024).
[3] Pan, G. Z. et al. Harnessing the capabilities of VCSELs: unlocking the potential for advanced integrated photonic devices and systems. Light: Science & Applications 13, 229 (2024).
[4] Tian, F. S. et al. Electrically pumped surface-emitting amplified spontaneous emission from colloidal quantum dots. Light: Science & Applications 14, 279 (2025).
[5] Lu, H. et al. Shaping the light of VCSELs through cavity geometry design. Light: Science & Applications 14, 344 (2025).
[6] Park, Y. S. et al. Colloidal quantum dot lasers. Nature Reviews Materials 6, 382-401 (2021). doi: 10.1038/s41578-020-00274-9
[7] Jung, H., Ahn, N. & Klimov, V. I. Prospects and challenges of colloidal quantum dot laser diodes. Nature Photonics 15, 643-655 (2021). doi: 10.1038/s41566-021-00827-6
[8] Lim, J., Park, Y. S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nature Materials 17, 42-49 (2018). doi: 10.1038/nmat5011
[9] Wu, K. F. et al. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nature Nanotechnology 12, 1140-1147 (2017). doi: 10.1038/nnano.2017.189
[10] Roh, J. et al. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity. Nature Communications 11, 271 (2020). doi: 10.1038/s41467-019-14014-3
[11] Ahn, N. et al. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature 617, 79-85 (2023). doi: 10.1038/s41586-023-05855-6
[12] Armani, D. K. et al. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925-928 (2003). doi: 10.1038/nature01371