[1] Kamtekar, K. T., Monkman, A. P. & Bryce, M. R. Recent advances in white organic light-emitting materials and devices (WOLEDs). Adv. Mater. 22, 572-582 (2010). doi: 10.1002/adma.200902148
[2] Liang, J. F. et al. Recent advances in high performance solution processed WOLEDs for solid-state lighting. J. Mater. Chem. C4, 10993-1006 (2016).
[3] Kathirgamanathan, P. et al. Electroluminescent organic and quantum dot LEDs: the state of the art. J. Disp. Technol. 11, 480-493 (2015). doi: 10.1109/JDT.2015.2418279
[4] Bobbert, P. & Coehoorn, R. A look inside white OLEDs. Europhys. N. 44, 21-25 (2013).
[5] Mertens, R. The OLED Handbook. (OLED-Info, 2018).
[6] Bergemann, K. J., Krasny, R. & Forrest, S. R. Thermal properties of organic light-emitting diodes. Org. Electron. 13, 1565-1568 (2012). doi: 10.1016/j.orgel.2012.05.004
[7] Spindler, J. et al. High Brightness OLED Lighting. SID Symp. Dig. Tech. Pap. 47, 294-297 (2016). doi: 10.1002/sdtp.10647
[8] Nardelli, A. et al. Assessment of Light Emitting Diodes technology for general lighting: a critical review. Renew. Sustain. Energy Rev. 75, 368-379 (2017). doi: 10.1016/j.rser.2016.11.002
[9] Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234-238 (2009). doi: 10.1038/nature08003
[10] Kim, Y. H. et al. Achieving high efficiency and improved stability in ITO-free transparent organic light-emitting diodes with conductive polymer electrodes. Adv. Funct. Mater. 23, 3763-3769 (2013). doi: 10.1002/adfm.201203449
[11] Jung, S. et al. Extremely flexible transparent conducting electrodes for organic devices. Adv. Energy Mater. 4, 1300474 (2014). doi: 10.1002/aenm.201300474
[12] Park, J., Lee, J. & Noh, Y. Y. Optical and thermal properties of large-area OLED lightings with metallic grids. Org. Electron. 13, 184-194 (2012). doi: 10.1016/j.orgel.2011.10.024
[13] Kirsch, C. et al. Electrothermal simulation of large-area semiconductor devices. Int. J. of Multiphysics 11, 127-136 (2017). http://www.researchgate.net/publication/318272166_Electrothermal_simulation_of_large-area_semiconductor_devices
[14] Krikun, G. & Zojer, K. Impact of thermal transport parameters on the operating temperature of organic light emitting diodes. J. Appl. Phys. 125, 085501 (2019). doi: 10.1063/1.5079531
[15] Gärditz, C. et al. Impact of Joule heating on the brightness homogeneity of organic light emitting devices. Appl. Phys. Lett. 90, 103506 (2007). doi: 10.1063/1.2711708
[16] Neyts, K. et al. Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity. J. Appl. Phys. 100, 114513 (2006). doi: 10.1063/1.2390552
[17] Slawinski, M. et al. Investigation of large-area OLED devices with various grid geometries. Org. Electron. 14, 2387-2391 (2013). doi: 10.1016/j.orgel.2013.06.003
[18] Schwamb, P., Reusch, T. C. G. & Brabec, C. J. Passive cooling of large-area organic light-emitting diodes. Org. Electron. 14, 1939-1945 (2013). doi: 10.1016/j.orgel.2013.04.023
[19] Chung, S. et al. Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes. Appl. Phys. Lett. 94, 253302 (2009). doi: 10.1063/1.3154557
[20] Zakhidov, A. A. et al. Hydrofluoroethers as heat-transfer fluids for OLEDs: operational range, stability, and efficiency improvement. Org. Electron. 13, 356-360 (2012). doi: 10.1016/j.orgel.2011.12.004
[21] Becker, J. A., Green, C. B. & Pearson, G. L. Properties and uses of thermistors— thermally sensitive resistors. Trans. Am. Inst. Electr. Eng. 65, 711-725 (1946). doi: 10.1109/T-AIEE.1946.5059235
[22] Burgess, R. E. Fluctuations of the numbers of electrons and holes in a semiconductor. Proc. Phys. Soc. Sect. B 68, 661-671 (1955). doi: 10.1088/0370-1301/68/9/311
[23] Popescu, C. The effect of local non-uniformities on thermal switching and high field behaviour of structures with chalcogenide glasses. Solid-State Electron. 18, 671-681 (1975). doi: 10.1016/0038-1101(75)90139-2
[24] Fischer, A. et al. Self-heating, bistability, and thermal switching in organic semiconductors. Phys. Rev. Lett. 110, 126601 (2013). doi: 10.1103/PhysRevLett.110.126601
[25] Fischer, A. et al. Feel the heat: nonlinear electrothermal feedback in organic LEDs. Adv. Funct. Mater. 24, 3367-3374 (2014). doi: 10.1002/adfm.201303066
[26] Meerheim, R. et al. Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices. J. Appl. Phys. 104, 014510 (2008). doi: 10.1063/1.2951960
[27] Saragi, T. P. I., Fuhrmann‐Lieker, T. & Salbeck, J. Comparison of charge-carrier transport in thin films of Spiro-linked compounds and their corresponding parent compounds. Adv. Funct. Mater. 16, 966-974 (2006). doi: 10.1002/adfm.200500361
[28] Pohl, L., Kohári, Z. & Poppe, A. Vertical natural convection models and their effect on failure analysis in electro-thermal simulation of large-surface OLEDs. Microelectron. Reliab. 85, 198-206 (2018). doi: 10.1016/j.microrel.2018.05.002
[29] Fischer, A. & Kaschura, F. SweepMe!. (2019).
[30] Fischer, A. et al. Full electrothermal OLED model including nonlinear self-heating effects. Phys. Rev. Appl. 10, 014023 (2018). doi: 10.1103/PhysRevApplied.10.014023
[31] Liero, M. et al. 3D electrothermal simulations of organic LEDs showing negative differential resistance. Opt. Quantum Electron. 49, 330 (2017). doi: 10.1007/s11082-017-1167-4
[32] Fuhrmann, J. et al. WIAS-Software. Software components for PDEs. (2018).
[33] Schenk, O. & Gärtner, K. Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst. 20, 475-487 (2004). doi: 10.1016/j.future.2003.07.011
[34] Baldo, M. A., Adachi, C. & Forrest, S. R. Transient analysis of organic electrophosphorescence. Ⅱ. Transient analysis of triplet-triplet annihilation. Phys. Rev. B 62, 10967-10977 (2000). doi: 10.1103/PhysRevB.62.10967
[35] Fuhrmann, J., Glitzky, A. & Liero, M. Hybrid finite-volume/finite-element schemes for p(x)-laplace thermistor models. in Finite Volumes for Complex Applications VⅢ—Hyperbolic, Elliptic and Parabolic Problems (eds Cancès, C. & Omnes, P.) 397-405 (Springer, Cham, 2017).
[36] Schenk, O. & Gärtner, K. On fast factorization pivoting methods for sparse symmetric indefinite systems. Electron. Trans. Numer. Anal. 23, 158-179 (2006). http://www.researchgate.net/publication/261173889_On_fast_factorization_pivoting_methods_for_symmetric_indefinite_systems
[37] Karypis, G. & Kumar, V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359-392 (1998). doi: 10.1137/S1064827595287997
[38] Hofmann, S. et al. Top-emitting organic light-emitting diodes. Opt. Express 19, A1250-A1264 (2011). doi: 10.1364/OE.19.0A1250
[39] Kim, K. H. et al. Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nat. Commun. 5, 4769 (2014). doi: 10.1038/ncomms5769
[40] Ràfols-Ribé, J. et al. High-performance organic light-emitting diodes comprising ultrastable glass layers. Sci. Adv. 4, eaar8332 (2018). doi: 10.1126/sciadv.aar8332
[41] OSRAM OLED GmbH. Segmented OLED rearlight demonstrator, www.osram-oled.com/applications. (2019).
[42] Fischer, A. et al. Self-heating effects in organic semiconductor crossbar structures with small active area. Org. Electron. 13, 2461-2468 (2012). doi: 10.1016/j.orgel.2012.06.046