[1] Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 74, 229-263 (2024).
[2] Grischke, E. -M. et al. ICG Fluorescence Technique for the Detection of Sentinel Lymph Nodes in Breast Cancer: Results of a Prospective Open-label Clinical Trial. Geburtshilfe und Frauenheilkunde 75, 935–940 (2015).
[3] Hartmann, S. et al. Indocyanine Green Marking of Axillary Sentinel Lymph Nodes in Early Breast Cancer. Geburtshilfe und Frauenheilkunde 85, 631-638 (2024).
[4] Ferreira, H., Smith, A. V. & Wattiez, A. Application of Indocyanine Green in Gynecology: Review of the Literature. Surgical technology international 34, 282-292 (2019).
[5] Baldari, L. et al. ICG-enhanced Fluorescence-guided Laparoscopic Surgery (Endo Press, 2021). https://www.karlstorz.com/catalog-api/mediafiles/stream/de_de/85092. ISBN: 9783897567948.
[6] Becker, L. et al. Raman Imaging and Fluorescence Lifetime Imaging Microscopy for Diagnosis of Cancer State and Metabolic Monitoring. Cancers 13, 5682 (2021). doi: 10.3390/cancers13225682
[7] Becker, L. et al. Data-Driven Identification of Biomarkers for In Situ Monitoring of Drug Treatment in Bladder Cancer Organoids. International Journal of Molecular Sciences 23, 6956 (2022). doi: 10.3390/ijms23136956
[8] Shaked, N. T. et al. Label-free biomedical optical imaging. Nature Photonics 17, 1031-1041 (2023). doi: 10.1038/s41566-023-01299-6
[9] Krafft, C. et al. Raman Spectroscopic Imaging of Human Bladder Resectates towards Intraoperative Cancer Assessment. Cancers 15, 2162 (2023). doi: 10.3390/cancers15072162
[10] Latka, I. et al. Raman Spectroscopy for Instant Bladder Tumor Diagnosis: System Development and In Vivo Proof- Of-Principle Study in Accordance with the European Medical Device Regulation (MDR2017/745). Cancers 16, 3238 (2024). doi: 10.3390/cancers16183238
[11] Kuznetsov, K. , Lambert, R. & Rey, J. -F. Narrow-Band Imaging: Potential and Limitations. Endoscopy 38, 76–81 (2006).
[12] Wong Kee Song, L. M. et al. Narrow band imaging and multiband imaging. Gastrointestinal Endoscopy 67, 581-589 (2008). doi: 10.1016/j.gie.2008.01.013
[13] Lukes, P. et al. Narrow Band Imaging (NBI) — Endoscopic Method for Detection of Head and Neck Cancer. In Endoscopy (ed Amornyotin, S. ) Ch. 5 (Rijeka: IntechOpen, 2013).
[14] Yoon, J. Hyperspectral Imaging for Clinical Applications. BioChip Journal 16, 1-12 (2022). doi: 10.1007/s13206-021-00041-0
[15] Hagen, N. & Kudenov, M. W. Review of snapshot spectral imaging technologies. Optical Engineering 52, 090901 (2013). doi: 10.1117/1.OE.52.9.090901
[16] Akbari, H. et al. Cancer detection using infrared hyperspectral imaging. Cancer Science 102, 852-857 (2011). doi: 10.1111/j.1349-7006.2011.01849.x
[17] Lu, G. L. & Fei, B. W. Medical hyperspectral imaging: a review. Journal of Biomedical Optics 19, 010901 (2014). doi: 10.1117/1.JBO.19.1.010901
[18] Clancy, N. T. et al. Surgical spectral imaging. Medical Image Analysis 63, 101699 (2020). doi: 10.1016/j.media.2020.101699
[19] Kho, E. et al. Broadband hyperspectral imaging for breast tumor detection using spectral and spatial information. Biomedical Optics Express 10, 4496 (2019). doi: 10.1364/BOE.10.004496
[20] Köhler, H. et al. Laparoscopic system for simultaneous high-resolution video and rapid hyperspectral imaging in the visible and near-infrared spectral range. Journal of Biomedical Optics 25, 086004 (2020).
[21] Pruitt, K. et al. A high-speed hyperspectral laparoscopic imaging system. In Proceedings of SPIE 12466, Medical Imaging 2023: Image-Guided Procedures, Robotic Interventions, and Modeling, 1246608. SPIE (SPIE, San Diego, CA, USA, 2023).
[22] Wilson, R. H. et al. Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization. Journal of Biomedical Optics 20, 030901 (2015). doi: 10.1117/1.JBO.20.3.030901
[23] Thomaßen, M. T. et al. In vivo evaluation of a hyperspectral imaging system for minimally invasive surgery (HSI-MIS). Surgical Endoscopy 37, 3691-3700 (2023). doi: 10.1007/s00464-023-09874-2
[24] Mahoney, L. & Csima, A. Efficiency of palpation in clinical detection of breast cancer. Canadian Medical Association Journal 127, 729-730 (1982).
[25] Ciatto, S. Detection of breast cancer local recurrences. Annals of Oncology 6, S23-S26 (1995). doi: 10.1093/annonc/6.suppl_2.S23
[26] Goodson III, W. H. Clinical breast examination. The Western journal of medicine 164, 355-358 (1996).
[27] Pleijhuis, R. G. et al. Obtaining Adequate Surgical Margins in Breast-Conserving Therapy for Patients with Early-Stage Breast Cancer: Current Modalities and Future Directions. Annals of Surgical Oncology 16, 2717-2730 (2009). doi: 10.1245/s10434-009-0609-z
[28] Atkins, J. et al. Positive margin rates following breast-conserving surgery for stage I–III breast cancer: palpable versus nonpalpable tumors. Journal of Surgical Research 177, 109-115 (2012). doi: 10.1016/j.jss.2012.03.045
[29] Eggemann, H. et al. Ultrasonography-Guided Breast-Conserving Surgery Is Superior to Palpation-Guided Surgery for Palpable Breast Cancer. Clinical Breast Cancer 14, 40-45 (2014). doi: 10.1016/j.clbc.2013.08.016
[30] Fenner, J. et al. Macroscopic Stiffness of Breast Tumors Predicts Metastasis. Scientific Reports 4, 5512 (2014). doi: 10.1038/srep05512
[31] Westebring – van der Putten, E. P. et al. Haptics in minimally invasive surgery – a review. Minimally Invasive Therapy & Allied Technologies 17, 3-16 (2008).
[32] Pinzon, D., Byrns, S. & Zheng, B. Prevailing Trends in Haptic Feedback Simulation for Minimally Invasive Surgery. Surgical Innovation 23, 415-421 (2016). doi: 10.1177/1553350616628680
[33] Giovannini, M. Endoscopic Ultrasound Elastography. Pancreatology 11, 34-39 (2011). doi: 10.1159/000323496
[34] Abboud, Y. & Gaddam, S. The Role of Endoscopic Ultrasound-Guided Shear Wave Elastography in Pancreatic Diseases. Diagnostics 14, 2329 (2024). doi: 10.3390/diagnostics14202329
[35] Kennedy, B. F., Kennedy, K. M. & Sampson, D. D. A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects. IEEE Journal of Selected Topics in Quantum Electronics 20, 272-288 (2014). doi: 10.1109/JSTQE.2013.2291445
[36] Xu, H. X. et al. In Vivo endoscopic optical coherence elastography based on a miniature probe. Biomedical Optics Express 15, 4237–4252 (2024).
[37] Kalwa, P. L. & Schäffer, T. E. Water flow elastography – A promising tool to measure tissue stiffness during minimally invasive surgery. Journal of the Mechanical Behavior of Biomedical Materials 145, 106004 (2023). doi: 10.1016/j.jmbbm.2023.106004
[38] Kalwa, P. L. et al. Differentiation of bladder cancer with water flow elastography (WaFE). Journal of the Mechanical Behavior of Biomedical Materials 150, 106319 (2024). doi: 10.1016/j.jmbbm.2023.106319
[39] Aslani, V. et al. Sensorsystem zur minimalinvasiven intraoperativen Gewebedifferenzierung in der Onkologie mittels endoskopischer Streifenprojektion. In DGaO Proceedings, A28 (2023).
[40] Aslani, V. et al. Endoscopic measurement system for elastographic tissue differentiation based on active triangulation and 3D-printed micro-optics. In Proceedings of SPIE 12817, Advanced Photonics in Urology 2024, Vol. 12817, 128170E. SPIE (SPIE, San Francisco, CA; USA, 2024).
[41] Aslani, V. Endoskopisches Messsystem zur elastografischen Gewebedifferenzierung basierend auf aktiver Triangulation und 3D-gedruckter Mikrooptik. PhD thesis, University of Stuttgart, Stuttgart, 2024.
[42] Atmaca, Ö. et al. Elastographic Measurements Using Fourier Transform Profilometry for Tissue Differentiation in Oncology. In DGaO Proceedings 2024, P20 (2024).
[43] Gronle, M. et al. itom: an open source metrology, automation, and data evaluation software. Applied Optics 53, 2974–2982 (2014).
[44] itom Measurement Software. https://itom-project.github.io/.
[45] Rüdinger, A. , Haist, T. & Reichelt, S. Hyperspectral measurement system for characterization of healthy and malignant tissue spectra. In DGaO Proceedings, P19 (2024).
[46] Schmidt, S. et al. Optikvorrichtung zum Projizieren eines Musters auf eine Oberfläche (2024).
[47] Volynskaya, Z. et al. Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. Journal of Biomedical Optics 13, 024012 (2008). doi: 10.1117/1.2909672
[48] Evers, D. J. et al. Diffuse reflectance spectroscopy: towards clinical application in breast cancer. Breast Cancer Research and Treatment 137, 155-165 (2013). doi: 10.1007/s10549-012-2350-8
[49] Soares, J. S. et al. Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications. Proceedings of the National Academy of Sciences of the United States of America 110, 471-476 (2012).
[50] Chaudhry, N. et al. Breast Cancer Diagnosis Using Extended-Wavelength–Diffuse Reflectance Spectroscopy (EW- DRS)—Proof of Concept in Ex Vivo Breast Specimens Using Machine Learning. Diagnostics 13, 3076 (2023). doi: 10.3390/diagnostics13193076
[51] Chaudhry, N. et al. Breast cancer diagnosis using extended-wavelength diffuse reflectance spectroscopy: comparing tumor subgroups. In Proceedings of SPIE 13174, 17th International Workshop on Breast Imaging, 131740X. SPIE (SPIE, Chicago, IL, USA, 2024).
[52] Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. Journal of the Optical Society of America 72, 156 (1982). doi: 10.1364/JOSA.72.000156
[53] Takeda, M. & Mutoh, K. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Applied Optics 22, 3977-3982 (1983). doi: 10.1364/AO.22.003977
[54] Takeda, M. Fourier fringe analysis and its application to metrology of extreme physical phenomena: a review [invited]. Applied Optics 52, 20-29 (2013). doi: 10.1364/AO.52.000020
[55] Lei, H. et al. A novel algorithm based on histogram processing of reliability for two-dimensional phase unwrapping. Optik 126, 1640-1644 (2015). doi: 10.1016/j.ijleo.2015.04.070
[56] Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. The Journal of Machine Learning Research 12, 2825-2830 (2011).
[57] Reinhart, M. B. et al. Indocyanine Green: Historical Context, Current Applications, and Future Considerations. Surgical Innovation 23, 166-175 (2016). doi: 10.1177/1553350615604053
[58] Broitman, E. Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview. Tribology Letters 65, 23 (2017). doi: 10.1007/s11249-016-0805-5
[59] van Dommelen, J. A. W. et al. Mechanical properties of brain tissue by indentation: Interregional variation. Journal of the Mechanical Behavior of Biomedical Materials 3, 158-166 (2010). doi: 10.1016/j.jmbbm.2009.09.001
[60] Fischer-Cripps, A. C. A review of analysis methods for sub-micron indentation testing. Vacuum 58, 569-585 (2000). doi: 10.1016/S0042-207X(00)00377-8
[61] Selby, A., Maldonado-Codina, C. & Derby, B. Influence of specimen thickness on the nanoindentation of hydrogels: Measuring the mechanical properties of soft contact lenses. Journal of the Mechanical Behavior of Biomedical Materials 35, 144-156 (2014). doi: 10.1016/j.jmbbm.2013.11.023
[62] Rubiano, A., Galitz, C. & Simmons, C. S. Mechanical Characterization by Mesoscale Indentation: Advantages and Pitfalls for Tissue and Scaffolds. Tissue Engineering Part C: Methods 25, 619-629 (2019). doi: 10.1089/ten.tec.2018.0372
[63] Cabeza-Gil, I., Tahsini, V. & Kling, S. Viscoelastic properties of porcine lenses using optical coherence elastography and inverse finite element analysis. Experimental Eye Research 233, 109558 (2023). doi: 10.1016/j.exer.2023.109558
[64] Wirkert, S. J. Multispectral image analysis in laparoscopy – A machine learning approach to live perfusion monitoring. PhD thesis, Karlsruhe Institute of Technology, Karlsruhe, 2018.