[1] Guo, R. et al. Log-pile photonic crystal fabricated by two-photon photopolymerization. Journal of Optics A: Pure and Applied Optics 7, 396-399 (2005). doi: 10.1088/1464-4258/7/8/008
[2] Malinauskas, M. et al. A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses. Journal of Optics 12, 35204 (2010). doi: 10.1088/2040-8978/12/3/035204
[3] Schmid, M. et al. Three-dimensional direct laser written achromatic axicons and multi-component microlenses. Optics Letters 43, 5837-5840 (2018). doi: 10.1364/OL.43.005837
[4] Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics 10, 554-560 (2016). doi: 10.1038/nphoton.2016.121
[5] Thiele, S. et al. 3D-printed eagle eye: compound microlens system for foveated imaging. Science Advances 3, e1602655 (2017). doi: 10.1126/sciadv.1602655
[6] Winfield, R. J. et al. Fabrication of grating structures by simultaneous multi-spot fs laser writing. Applied Surface Science 253, 8086-8090 (2007). doi: 10.1016/j.apsusc.2007.02.100
[7] Thiele, S. et al. 3D printed stacked diffractive microlenses. Optics Express 27, 35621-35630 (2019). doi: 10.1364/OE.27.035621
[8] von Freymann, G. et al. Three-dimensional nanostructures for photonics. Advanced Functional Materials 20, 1038-1052 (2010). doi: 10.1002/adfm.200901838
[9] Schumann, M. et al. Hybrid 2D-3D optical devices for integrated optics by direct laser writing. Light: Science & Applications 3, e175 (2014). doi: 10.1038/lsa.2014.56
[10] Lindenmann, N. et al. Photonic wire bonding: a novel concept for chip-scale interconnects. Optics Express 20, 17667-17677 (2012). doi: 10.1364/OE.20.017667
[11] Thiele, S. et al. Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing. Optics Letters 41, 3029-3032 (2016). doi: 10.1364/OL.41.003029
[12] Schmidt, S. et al. Tailored micro-optical freeform holograms for integrated complex beam shaping. Optica 7, 1279-1286 (2020). doi: 10.1364/OPTICA.395177
[13] Dietrich, P. I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nature Photonics 12, 241-247 (2018). doi: 10.1038/s41566-018-0133-4
[14] Gissibl, T. et al. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nature Communications 7, 11763 (2016). doi: 10.1038/ncomms11763
[15] Jonušauskas, L. et al. Mesoscale laser 3D printing. Optics Express 27, 15205-15221 (2019). doi: 10.1364/OE.27.015205
[16] Heinrich, A. & Rank, M. (eds) 3D Printing of Optics (SPIE Press, 2018). doi: 10.1117/3.2324763
[17] Simon, R. et al. Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components. Optical Materials Express 10.10: 2370-2378 (2020). doi: 10.1364/ome.401724
[18] Kim, S. et al. Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis. Biomedical Optics Express 7, 5294-5307 (2016). doi: 10.1364/BOE.7.005294
[19] Rissanen, A. et al. MEMS FPI-based smartphone hyperspectral imager. Proceedings of SPIE 9855: 985507 (2016).
[20] Potyrailo, R. A. et al. Fluorescence spectroscopy and multivariate spectral descriptor analysis for high-throughput multiparameter optimization of polymerization conditions of combinatorial 96-microreactor arrays. Journal of Combinatorial Chemistry 5, 8-17 (2003). doi: 10.1021/cc020062g
[21] Hamamatsu Datasheet. Mini-Spectrometer. SMD Series C14384MA-01 (2019).
[22] Ibsen Photonics. PEBBLE VIS. 380-850 nm OEM Spectrometer (2019).
[23] Huang, J. et al. Miniaturized NIR spectrometer based on novel MOEMS scanning tilted grating. Micromachines 9, 478 (2018). doi: 10.3390/mi9100478
[24] Calafiore, G. et al. Holographic planar lightwave circuit for on-chip spectroscopy. Light: Science & Applications 3, e203 (2014). doi: 10.1038/lsa.2014.84
[25] Kyotoku, B. B. C., Chen, L. & Lipson, M. Sub-nm resolution cavity enhanced microspectrometer. Optics Express 18, 102-107 (2010). doi: 10.1364/OE.18.000102
[26] Pang, Y. J., Yao, M. L. & Liu, S. Grating multiplexing structure based high-resolution infrared spectrometer. Infrared Physics & Technology 104, 103148 (2020). doi: 10.1016/j.infrared.2019.103148
[27] Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67-70 (2015). doi: 10.1038/nature14576
[28] Wang, Z. et al. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nature Communications 10, 1020 (2019). doi: 10.1038/s41467-019-08994-5
[29] Yang, Z. Y. et al. Single-nanowire spectrometers. Science 365, 1017-1020 (2019). doi: 10.1126/science.aax8814
[30] Zheng, B. J. et al. On‐chip measurement of photoluminescence with high sensitivity monolithic spectrometer. Advanced Optical Materials 8, 2000191 (2020). doi: 10.1002/adom.202000191
[31] Redding, B. et al. Compact spectrometer based on a disordered photonic chip. Nature Photonics 7, 746-751 (2013). doi: 10.1038/nphoton.2013.190
[32] Gildas, F. & Dan, Y. P. Review of nanostructure color filters. Journal of Nanophotonics 13, 020901 (2019). doi: 10.1117/1.jnp.13.020901
[33] Tang, X., Ackerman, M. M. & Guyot‐Sionnest, P. Acquisition of Hyperspectral data with colloidal quantum dots. Laser & Photonics Reviews 13, 1900165 (2019). doi: 10.1002/lpor.201900165
[34] Stewart, J. W. et al. Ultrafast pyroelectric photodetection with on-chip spectral filters. Nature Materials 19, 158-162 (2019). doi: 10.1038/s41563-019-0538-6
[35] Thiel, M. & Hermatschweiler, M. Three-dimensional laser lithography. Optik & Photonik 6, 36-39 (2011). doi: 10.1117/12.44795
[36] Schmidt, S. et al. Wave-optical modeling beyond the thin-element-approximation. Optics Express 24, 30188-30200 (2016). doi: 10.1364/OE.24.030188
[37] Drozella, J. et al. Fast and comfortable GPU-accelerated wave-optical simulation for imaging properties and design of highly aspheric 3D-printed freeform microlens systems. Proceedings of SPIE 11105, Novel Optical Systems, Methods, and Applications XXⅡ. San Diego, California, United States: SPIE, 2019, 1110506. doi: 10.1117/12.2528843
[38] Toulouse, A. et al. Alignment-free integration of apertures and nontransparent hulls into 3D-printed micro-optics. Optics Letters 43, 5283-5286 (2018). doi: 10.1364/OL.43.005283
[39] Toulouse, A. et al. Super-fine inkjet process for alignment-free integration of non-transparent structures into 3D-printed micro-optics. Proceedings of SPIE 10930, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XⅡ. San Francisco, California, United States: SPIE, 2019, 109300W. doi: 10.1364/ol.43.005283
[40] Schmid, M., Ludescher, D. & Giessen, H. Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Optical Materials Express 9, 4564-4577 (2019). doi: 10.1364/OME.9.004564
[41] Gross, H. Handbook of Optical Systems. Volume 2: Physical Image Formation. (Weinheim: Wiley-VCH, 2005). doi: 10.1002/9783527699223.ch10
[42] Kirchner, R. et al. Reducing the roughness of 3D micro-optics. SPIE Newsroom. http://dx.doi.org/10.1117/2.1201611.006788 (2017).
[43] Mayer, F. et al. Multimaterial 3D laser microprinting using an integrated microfluidic system. Science Advances 5, eaau9160 (2019). doi: 10.1126/sciadv.aau9160
[44] Chidambaram, N. et al. Selective surface smoothening of polymer Microlenses by depth confined softening. Advanced Materials Technologies 2, 1700018 (2017). doi: 10.1002/admt.201700018
[45] Gissibl, T. et al. Refractive index measurements of photo-resists for three-dimensional direct laser writing. Optical Materials Express 7, 2293-2298 (2017). doi: 10.1364/OME.7.002293
[46] Bruton, D. RGB VALUES FOR VISIBLE WAVELENGTHS. at http://www.physics.sfasu.edu/astro/color/spectra.html (1996).