[1] |
Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193 (2010). doi: 10.1038/nmat2630 |
[2] |
Editorial. Surface plasmon resurrection. Nat. Photon. 6, 707 (2012). doi: 10.1038/nphoton.2012.296 |
[3] |
Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett. 11, 2219 (2011). doi: 10.1021/nl200187v |
[4] |
Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt. Exp. 20, 28594 (2012). doi: 10.1364/OE.20.028594 |
[5] |
Li, W. & Valentine, J. Harvesting the loss: Surface plasmon-based hot electron photodetection. Nanophotonics 6, 177 (2016). doi: 10.1515/nanoph-2015-0154 |
[6] |
Naik, G. V. & Dionne, J. A. Photon upconversion with hot carriers in plasmonic systems. Appl. Phys. Lett. 107, 133902 (2015). doi: 10.1063/1.4932127 |
[7] |
Naik, G. V., Welch, A. J., Briggs, J. A., Solomon, M. L. & Dionne, J. A. Hot-carrier mediated photon upconversion in metal-decorated quantum wells. Nano Lett. 17, 4583 (2017). doi: 10.1021/acs.nanolett.7b00900 |
[8] |
Watanabe, K., Menzel, D., Nilius, N. & Freund, H.-J. Photochemistry on metal nanoparticles. Chem. Rev. 106, 4301 (2006). doi: 10.1021/cr050167g |
[9] |
Naldoni, A. et al. Solar-powered plasmon-enhanced heterogeneous catalysis. Nanophotonics 5, 112 (2016). doi: 10.1515/nanoph-2016-0018 |
[10] |
Linic, S., Christopher, P. & Ingram, D. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911 (2011). doi: 10.1038/nmat3151 |
[11] |
Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95 (2014). doi: 10.1038/nphoton.2013.238 |
[12] |
Baffou, G. & Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 43, 3898 (2014). doi: 10.1039/c3cs60364d |
[13] |
Moskovits, M. The case for plasmon-derived hot carrier devices. Nat. Nanotech. 10, 6 (2015). doi: 10.1038/nnano.2014.280 |
[14] |
Aruda, K. O. et al. Identification of parameters through which surface chemistry determines the lifetimes of hot electrons in small au nanoparticles. Proc. Natl. Acad. Sci. USA 110, 4212 (2013). http://www.pnas.org/content/110/11/4212. doi: 10.1073/pnas.1222327110 |
[15] |
Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotech. 8, 247 (2013). doi: 10.1038/nnano.2013.18 |
[16] |
Ueno, K., Oshikiri, T., Shi, X., Zhong, Y. & Misawa, H. Plasmon-induced artificial photosynthesis. Interface Focus 5, 20140082 (2014). |
[17] |
Groeneveld, R. H. M., Sprik, R. & Lagendijk, A. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. Phys. Rev. B 51, 11433 (1995). doi: 10.1103/PhysRevB.51.11433 |
[18] |
Fatti, N. D. et al. Nonequilibrium electron dynamics in noble metals. Phys. Rev. B 61, 16956 (2000). doi: 10.1103/PhysRevB.61.16956 |
[19] |
Grua, P., Morreeuw, J. P., Bercegol, H., Jonusauskas, G. & Valleé, F. Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses. Phys. Rev. B 68, 035424 (2003). doi: 10.1103/PhysRevB.68.035424 |
[20] |
Pietanza, L. D., Colonna, G., Longo, S. & Capitelli, M. Non-equilibrium electron and phonon dynamics in metals under femtosecond laser pulses. Eur. Phys. J. D. 45, 369 (2007). doi: 10.1140/epjd/e2007-00251-1 |
[21] |
Harutyunyan, H. et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotech. 10, 770 (2015). doi: 10.1038/nnano.2015.165 |
[22] |
Saavedra, J. R. M., Asenjo-Garcia, A. & de Abajo, F. J. G. Hot-electron dynamics and thermalization in small metallic nanoparticles. ACS Photonics 3, 1637 (2016). doi: 10.1021/acsphotonics.6b00217 |
[23] |
Sundararaman, R., Narang, P., Jermyn, A. S., Goddard, W. A. & Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014). doi: 10.1038/ncomms6788 |
[24] |
Bernardi, M., Mustafa, J., Neaton, J. B. & Louie, S. G. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun. 6, 7044 (2015). doi: 10.1038/ncomms8044 |
[25] |
Brown, A. M. et al. Experimental and ab initio ultrafast carrier dynamics in plasmonic nanoparticles. Phys. Rev. Lett. 118, 087401 (2017). doi: 10.1103/PhysRevLett.118.087401 |
[26] |
Govorov, A. O., Zhang, H. & Gun'ko, Y. K. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C. 117, 16616 (2013). doi: 10.1021/jp405430m |
[27] |
Zhang, H. & Govorov, A. O. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. J. Phys. Chem. C. 118, 7606 (2014). doi: 10.1021/jp500009k |
[28] |
Besteiro, L. V., Kong, X.-T., Wang, Z., Hartland, G. & Govorov, A. O. Understanding hot-electron generation and plasmon relaxation in metal nanocrystals: Quantum and classical mechanisms. ACS Photonics 4, 2759 (2017). doi: 10.1021/acsphotonics.7b00751 |
[29] |
Govorov, A. O. & Besteiro, L. V. "Comments on "hot" electrons in metallic nanostructures-non-thermal carriers or heating?" and assistance of metal nanoparticles to photo-catalysis-nothing more than a classical heat source. ArXiv, (2019). https://arxiv.org/abs/1906.06599. |
[30] |
Puglisi, A., Sarracino, A. & Vulpiani, A. Temperature in and out of equilibrium: a review of concepts, tools and attempts. Phys. Rep. 709, 1 (2017). |
[31] |
Baffou, G. & Quidant, R. Thermo-plasmonics: using metallic nanostructures as nanosources of heat. Laser Photon. Rev. 7, 171 (2013). doi: 10.1002/lpor.201200003 |
[32] |
Anisimov, S. I., Kapeilovich, B. L. & Perelman, T. I. Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP 39, 375 (1974). |
[33] |
Meng, L., Yu, R., Qiu, M. & de Abajo, F. J. G. Plasmonic nano-oven by concatenation of multishell photothermal enhancement. ACS Nano 11, 7915 (2019). |
[34] |
Ziman, J. M. Principles of the theory of solids. (Cambridge University Press, 1972). |
[35] |
Ashcroft, N. W. & Mermin, N. D. Solid state physics. (Brooks/Cole, 1976). |
[36] |
Pines, D. & Nozieres, P. The theory of quantum liquids. (Benjamin, New York, 1966). |
[37] |
Dressel, M. & Grüner, G. Electrodynamics of solids-optical properties of electrons in matter. (Cambridge University Press, 2002). |
[38] |
Rethfeld, B., Kaiser, A., Vicanek, M. & Simon, G. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 65, 214303 (2002). doi: 10.1103/PhysRevB.65.214303 |
[39] |
Kornbluth, M., Nitzan, A. & Seidman, T. Light-induced electronic non-equilibrium in plasmonic particles. J. Chem. Phys. 138, 174707 (2013). doi: 10.1063/1.4802000 |
[40] |
Manjavacas, A., Liu, J. G., Kulkarni, V. & Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630 (2014). doi: 10.1021/nn502445f |
[41] |
Baranov, V. V. & Kabanov, V. V. Theory of the electron relaxation in metals excited by an ultrashort optical pump. Phys. Rev. B 84, 125102 (2014). |
[42] |
Allen, P. B. Theory of thermal relaxation of electrons in metals. Phys. Rev. Lett. 59, 1460 (1987). doi: 10.1103/PhysRevLett.59.1460 |
[43] |
Brown, A. M., Sundararaman, R., Narang, P., Goddard, W. A. & Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry. ACS Nano 10, 957 (2016). doi: 10.1021/acsnano.5b06199 |
[44] |
Lundstrom, M. Fundamentals of carrier transport (Addison-Wesley, 1990). |
[45] |
Sivan, Y., Un, I. W. & Dubi, Y. Assistance of plasmonic nanostructures to photocatalysis- just a regular heat source. Faraday Discuss. 214, 215 (2019). doi: 10.1039/C8FD00147B |
[46] |
Mukherjee, S. et al. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240 (2013). doi: 10.1021/nl303940z |
[47] |
Gong, T. & Munday, J. N. Materials for hot carrier plasmonics. Optical Mater. Express 5, 2501 (2015). doi: 10.1364/OME.5.002501 |
[48] |
Baffou, G., Quidant, R. & de Abajo, F. J. G. Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709 (2010). doi: 10.1021/nn901144d |
[49] |
Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64 (2014). doi: 10.1021/ja411017b |
[50] |
Sivan, Y., Un, I. W. & Dubi, Y. (2019b). Thermal effects-an alternative mechanism for plasmonic assisted photo-catalysis. https://arxiv.org/abs/1902.03169. |
[51] |
Khurgin, J. Hot carriers generated by plasmons: where are they are generated and where do they go from there? Faraday Discuss. 214, 35 (2019). doi: 10.1039/C8FD00200B |
[52] |
Sobhani, A. et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 4, 1643 (2013). doi: 10.1038/ncomms2642 |
[53] |
Christopher, P., Xin, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044 (2012). doi: 10.1038/nmat3454 |
[54] |
Sivan, Y., Baraban, J., Un, I. W. & Dubi, Y. Comment on "Quantifying hot carrier and thermal contributions in plasmonic photocatalysis". Science 364, eaaw9367 (2019). doi: 10.1126/science.aaw9367 |
[55] |
Zhao, J. et al. A comparison of photocatalytic activities of gold nanoparticles following plasmonic and interband excitation and a strategy for harnessing interband hot carriers for solution phase photocatalysis. ACS Cent. Sci. 3, 482 (2017). doi: 10.1021/acscentsci.7b00122 |
[56] |
Giugni, A. et al. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotech. 8, 845-852 (2013). doi: 10.1038/nnano.2013.207 |