[1] Feng, J. et al. Light manipulation in organic light-emitting devices by integrating micro/nano patterns. Laser & Photonics Reviews 11, 1600145 (2017).
[2] Kim, D. H. et al. Biomimetic nanopatterns as enabling tools for analysis and control of live cells. Advanced Materials 22, 4551-4566 (2010). doi: 10.1002/adma.201000468
[3] Shin, D. O. et al. Multicomponent nanopatterns by directed block copolymer self-assembly. ACS Nano 7, 8899-8907 (2013). doi: 10.1021/nn403379k
[4] Del Barrio, J. & Sánchez-Somolinos, C. Light to shape the future: from photolithography to 4D printing. Advanced Optical Materials 7, 1900598 (2019). doi: 10.1002/adom.201900598
[5] Zhang, C. et al. Review of imprinted polymer microrings as ultrasound detectors: design, fabrication, and characterization. IEEE Sensors Journal 15, 3241-3248 (2015). doi: 10.1109/JSEN.2015.2421519
[6] Fan, H. J., Werner, P. & Zacharias, M. Semiconductor nanowires: from self-organization to patterned growth. Small 2, 700-717 (2006). doi: 10.1002/smll.200500495
[7] Kim, S. O. et al. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411-414 (2003). doi: 10.1038/nature01775
[8] Habault, D., Zhang, H. J. & Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chemical Society Reviews 42, 7244-7256 (2013). doi: 10.1039/c3cs35489j
[9] Wang, D. R. & Wang, X. G. Amphiphilic azo polymers: molecular engineering, self-assembly and photoresponsive properties. Progress in Polymer Science 38, 271-301 (2013). doi: 10.1016/j.progpolymsci.2012.07.003
[10] Wang, Y. P. et al. Block copolymer aggregates with photo-responsive switches: towards a controllable supramolecular container. Polymer 50, 4821-4828 (2009). doi: 10.1016/j.polymer.2009.08.005
[11] Natansohn, A. & Rochon, P. Photoinduced motions in azo-containing polymers. Chemical Reviews 102, 4139-4176 (2002). doi: 10.1021/cr970155y
[12] Itoga, K. et al. Cell micropatterning using photopolymerization with a liquid crystal device commercial projector. Biomaterials 25, 2047-2053 (2004). doi: 10.1016/j.biomaterials.2003.08.052
[13] Rayner, D. M., Naumov, A. & Corkum, P. B. Ultrashort pulse non-linear optical absorption in transparent media. Optics Express 13, 3208-3217 (2005). doi: 10.1364/OPEX.13.003208
[14] Yesodha, S. K., Pillai, C. K. S. & Tsutsumi, N. Stable polymeric materials for nonlinear optics: a review based on azobenzene systems. Progress in Polymer Science 29, 45-74 (2004). doi: 10.1016/j.progpolymsci.2003.07.002
[15] Choi, B. Y. et al. Conformational molecular switch of the azobenzene molecule: a scanning tunneling microscopy study. Physical Review Letters 96, 156106 (2006). doi: 10.1103/PhysRevLett.96.156106
[16] Zhu, L. L. et al. Luminescent color conversion on cyanostilbene-functionalized quantum dots via in-situ photo-tuning. Advanced Materials 24, 4020-4024 (2012). doi: 10.1002/adma.201200709
[17] Byrne, R. et al. Characterisation and analytical potential of a photo-responsive polymeric material based on spiropyran. Biosensors and Bioelectronics 26, 1392-1398 (2010). doi: 10.1016/j.bios.2010.07.059
[18] Berkovic, G., Krongauz, V. & Weiss, V. Spiropyrans and spirooxazines for memories and switches. Chemical Reviews 100, 1741-1754 (2000). doi: 10.1021/cr9800715
[19] Yokoyama, Y. Fulgides for memories and switches. Chemical Reviews 100, 1717-1740 (2000). doi: 10.1021/cr980070c
[20] Pang, X. L. et al. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators. Advanced Materials 31, 1904224 (2019). doi: 10.1002/adma.201904224
[21] Karageorgiev, P. et al. From anisotropic photo-fluidity towards nanomanipulation in the optical near-field. Nature Materials 4, 699-703 (2005). doi: 10.1038/nmat1459
[22] Probst, C. et al. Athermal azobenzene-based nanoimprint lithography. Advanced Materials 28, 2624-2628 (2016). doi: 10.1002/adma.201505552
[23] Priimagi, A. & Shevchenko, A. Azopolymer-based micro-and nanopatterning for photonic applications. Journal of Polymer Science Part B:Polymer Physics 52, 163-182 (2014). doi: 10.1002/polb.23390
[24] Kang, H. S. et al. Light-powered healing of a wearable electrical conductor. Advanced Functional Materials 24, 7273-7283 (2014). doi: 10.1002/adfm.201401666
[25] Kang, H. S. et al. Hierarchical membranes with size-controlled nanopores from photofluidization of electrospun azobenzene polymer fibers. Journal of Materials Chemistry A 5, 18762-18769 (2017). doi: 10.1039/C7TA05313D
[26] Merino, E. & Ribagorda, M. Control over molecular motion using the cistrans photoisomerization of the azo group. Beilstein Journal of Organic Chemistry 8, 1071-1090 (2012). doi: 10.3762/bjoc.8.119
[27] Goulet-Hanssens, A. et al. Electrocatalytic ZE isomerization of azobenzenes. Journal of the American Chemical Society 139, 335-341 (2017). doi: 10.1021/jacs.6b10822
[28] Yu, H. F. Photoresponsive liquid crystalline block copolymers: from photonics to nanotechnology. Progress in Polymer Science 39, 781-815 (2014). doi: 10.1016/j.progpolymsci.2013.08.005
[29] Mavrona, E. et al. Intrinsic and photo-induced properties of high refractive index azobenzene based thin films. Optical Materials Express 8, 420-430 (2018). doi: 10.1364/OME.8.000420
[30] Hartley, G. S. The cis-form of azobenzene. Nature 140, 281 (1937).
[31] Chang, J. B. et al. Effect of dye structure on orientational behavior and transition dipole moments in coatable guest–host polarizers. Dyes and Pigments 121, 30-37 (2015). doi: 10.1016/j.dyepig.2015.05.007
[32] Barrett, C. J. et al. Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter 3, 1249-1261 (2007). doi: 10.1039/b705619b
[33] Akiyama, H. & Yoshida, M. Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo-arms. Advanced Materials 24, 2353-2356 (2012). doi: 10.1002/adma.201104880
[34] Yager, K. G. & Barrett, C. J. Temperature modeling of laser-irradiated azo-polymer thin films. The Journal of Chemical Physics 120, 1089-1096 (2004). doi: 10.1063/1.1631438
[35] Barrett, C. J., Natansohn, A. L. & Rochon, P. L. Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films. The Journal of Physical Chemistry 100, 8836-8842 (1996). doi: 10.1021/jp953300p
[36] Pedersen, T. G. et al. Mean-field theory of photoinduced formation of surface reliefs in side-chain azobenzene polymers. Physical Review Letters 80, 89-92 (1998). doi: 10.1103/PhysRevLett.80.89
[37] Kumar, J. et al. Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers. Applied Physics Letters 72, 2096-2098 (1998). doi: 10.1063/1.121287
[38] Bian, S. P. et al. Photoinduced surface relief grating on amorphous poly (4-phenylazophenol) films. Chemistry of Materials 12, 1585-1590 (2000). doi: 10.1021/cm000071x
[39] Lefin, P., Fiorini, C. & Nunzi, J. M. Anisotropy of the photo-induced translation diffusion of azobenzene dyes in polymer matrices. Pure and Applied Optics:Journal of the European Optical Society Part A 7, 71-82 (1998). doi: 10.1088/0963-9659/7/1/011
[40] Juan, M. L. et al. Multiscale model for photoinduced molecular motion in azo polymers. ACS Nano 3, 1573-1579 (2009). doi: 10.1021/nn900262e
[41] Lednev, I. K. et al. Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength. Chemical Physics Letters 290, 68-74 (1998). doi: 10.1016/S0009-2614(98)00490-4
[42] Kang, H. S. et al. Multi-level micro/nanotexturing by three-dimensionally controlled photofluidization and its use in plasmonic applications. Advanced Materials 25, 5490-5497 (2013). doi: 10.1002/adma.201301715
[43] Fang, G. J. et al. Athermal photofluidization of glasses. Nature Communications 4, 1521 (2013). doi: 10.1038/ncomms2483
[44] Xie, S., Natansohn, A. & Rochon, P. Microstructure of copolymers containing Disperse Red 1 and methyl methacrylate. Macromolecules 27, 1885-1890 (1994). doi: 10.1021/ma00085a034
[45] Viswanathan, N. K. et al. Surface relief structures on azo polymer films. Journal of Materials Chemistry 9, 1941-1955 (1999). doi: 10.1039/a902424g
[46] Ambrosio, A. et al. Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination. Nature Communications 3, 989 (2012). doi: 10.1038/ncomms1996
[47] Hubert, C. et al. Spontaneous patterning of hexagonal structures in an azo-polymer using light-controlled mass transport. Advanced Materials 14, 729-732 (2002). doi: 10.1002/1521-4095(20020517)14:10<729::AID-ADMA729>3.0.CO;2-1
[48] Zhou, X. R., Du, Y. & Wang, X. G. Azo polymer janus particles and their photoinduced, symmetry-breaking deformation. ACS Macro Letters 5, 234-237 (2016). doi: 10.1021/acsmacrolett.5b00932
[49] Lee, S. H. et al. Azo polymer multilayer films by electrostatic self-assembly and layer-by-layer post azo functionalization. Macromolecules 33, 6534-6540 (2000). doi: 10.1021/ma9921495
[50] Ambrosio, A., Maddalena, P. & Marrucci, L. Molecular model for light-driven spiral mass transport in azopolymer films. Physical Review Letters 110, 146102 (2013). doi: 10.1103/PhysRevLett.110.146102
[51] Kang, H. S., Lee, S. & Park, J. K. Monolithic, hierarchical surface reliefs by holographic photofluidization of azopolymer arrays: direct visualization of polymeric flows. Advanced Functional Materials 21, 4412-4422 (2011). doi: 10.1002/adfm.201101203
[52] Wang, X. L., Yin, J. J. & Wang, X. G. Photoinduced self-structured surface pattern on a molecular azo glass film: structure–property relationship and wavelength correlation. Langmuir 27, 12666-12676 (2011). doi: 10.1021/la2027253
[53] Kang, H. S. et al. Light-induced surface patterning of silica. ACS Nano 9, 9837-9848 (2015). doi: 10.1021/acsnano.5b03946
[54] Koskela, J. E. et al. Light-fuelled transport of large dendrimers and proteins. Journal of the American Chemical Society 136, 6850-6853 (2014). doi: 10.1021/ja502623m
[55] Ubukata, T., Isoshima, T. & Hara, M. Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system. Advanced Materials 17, 1630-1633 (2005). doi: 10.1002/adma.200402080
[56] Yadavalli, N. S. et al. Structuring of photosensitive material below diffraction limit using far field irradiation. Applied Physics A 113, 263-272 (2013). doi: 10.1007/s00339-013-7945-3
[57] Jelken, J., Henkel, C. & Santer, S. Formation of half-period surface relief gratings in azobenzene containing polymer films. Applied Physics B 126, 149 (2020).
[58] Emoto, A., Uchida, E. & Fukuda, T. Optical and physical applications of photocontrollable materials: azobenzene-containing and liquid crystalline polymers. Polymers 4, 150-186 (2012). doi: 10.3390/polym4010150
[59] Kang, H. S. et al. Three-dimensional photoengraving of monolithic, multifaceted metasurfaces. Advanced Materials 33, 2005454 (2020).
[60] Oscurato, S. L. et al. From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics 7, 1387-1422 (2018). doi: 10.1515/nanoph-2018-0040
[61] Salvatore, M., Borbone, F. & Oscurato, S. L. Deterministic realization of quasicrystal surface relief gratings on thin azopolymer films. Advanced Materials Interfaces 7, 1902118 (2020). doi: 10.1002/admi.201902118
[62] Sakhno, O. et al. Deep surface relief grating in azobenzene-containing materials using a low-intensity 532 nm laser. Optical Materials:X 1, 100006 (2019). doi: 10.1016/j.omx.2019.100006
[63] Samanta, D. et al. Reversible photoswitching of encapsulated azobenzenes in water. Proceedings of the National Academy of Sciences of the United States of America 115, 9379-9384 (2018). doi: 10.1073/pnas.1712787115
[64] Shirazi, H. D. et al. Multiscale hierarchical surface patterns by coupling optical patterning and thermal shrinkage. ACS Applied Materials & Interfaces 13, 15563-15571 (2021).
[65] Kravchenko, A. et al. Optical interference lithography using azobenzene-functionalized polymers for micro-and nanopatterning of silicon. Advanced Materials 23, 4174-4177 (2011). doi: 10.1002/adma.201101888
[66] Ambrosio, A. et al. Controlling spontaneous surface structuring of azobenzene-containing polymers for large-scale nano-lithography of functional substrates. Applied Physics Letters 102, 093102 (2013). doi: 10.1063/1.4794398
[67] Hendrikx, M. et al. Light-triggered formation of surface topographies in azo polymers. Crystals 7, 231 (2017). doi: 10.3390/cryst7080231
[68] Labarthet, F. L., Buffeteau, T. & Sourisseau, C. Azopolymer holographic diffraction gratings: time dependent analyses of the diffraction efficiency, birefringence, and surface modulation induced by two linearly polarized interfering beams. The Journal of Physical Chemistry B 103, 6690-6699 (1999). doi: 10.1021/jp990752j
[69] Xiong, Z. Y., Liao, C. L. & Wang, X. G. Reduced graphene oxide diffraction gratings from duplication of photoinduced azo polymer surface-relief-gratings through soft-lithography. Journal of Materials Chemistry C 3, 6224-6231 (2015).
[70] Labarthet, F. L., Buffeteau, T. & Sourisseau, C. Analyses of the diffraction efficiencies, birefringence, and surface relief gratings on azobenzene-containing polymer films. Journal of Physical Chemistry B 102, 2654-2662 (1998). doi: 10.1021/jp980050e
[71] Lee, S., Jeong, Y. C. & Park, J. K. Facile fabrication of close-packed microlens arrays using photoinduced surface relief structures as templates. Optics Express 15, 14550-14559 (2007). doi: 10.1364/OE.15.014550
[72] Hong, J. C. et al. Photoinduced tuning of optical stop bands in azopolymer based inverse opal photonic crystals. Advanced Functional Materials 17, 2462-2469 (2007). doi: 10.1002/adfm.200600773
[73] Kossifos, K. M. et al. An optically-programmable absorbing metasurface. Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Florence: IEEE, 2018: 1-5.
[74] Zhang, G. Q. et al. Tailoring nanohole plasmonic resonance with light-responsive azobenzene compound. ACS Applied Materials & Interfaces 11, 2254-2263 (2019).
[75] Choi, C. H. & Kim, C. J. Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control. Nanotechnology 17, 5326-5333 (2006). doi: 10.1088/0957-4484/17/21/007
[76] Wang, K. X. et al. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Letters 12, 1616-1619 (2012). doi: 10.1021/nl204550q
[77] Moerland, R. J. et al. Large-area arrays of three-dimensional plasmonic subwavelength-sized structures from azopolymer surface-relief gratings. Materials Horizons 1, 74-80 (2014). doi: 10.1039/C3MH00008G
[78] Liu, B. et al. Duplication of photoinduced azo polymer surface-relief gratings through a soft lithographic approach. Langmuir 22, 7405-7410 (2006). doi: 10.1021/la061178n
[79] Na, S. I. et al. Surface relief gratings on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells. Applied Physics Letters 91, 173509 (2007). doi: 10.1063/1.2802561
[80] Jeong, S. M. et al. Enhancement of light extraction from organic light-emitting diodes with two-dimensional hexagonally nanoimprinted periodic structures using sequential surface relief grating. Japanese Journal of Applied Physics 47, 4566-4571 (2008). doi: 10.1143/JJAP.47.4566
[81] Paterson, J. et al. Optically inscribed surface relief diffraction gratings on azobenzene‐containing polymers for coupling light into slab waveguides. Applied Physics Letters 69, 3318-3320 (1996). doi: 10.1063/1.117292
[82] Madani, A. et al. Experimental study of liquid-crystal alignment on a surface relief grating. Laser Physics 16, 1197-1201 (2006). doi: 10.1134/S1054660X0608007X
[83] Zhao, Y. et al. Anisotropic wetting characteristics on submicrometer-scale periodic grooved surface. Langmuir 23, 6212-6217 (2007). doi: 10.1021/la0702077
[84] Wu, D. et al. A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting. Applied Physics Letters 96, 053704 (2010). doi: 10.1063/1.3297881
[85] Xia, D. Y., Johnson, L. M. & López, G. P. Anisotropic wetting surfaces with one-dimesional and directional structures: fabrication approaches, wetting properties and potential applications. Advanced Materials 24, 1287-1302 (2012). doi: 10.1002/adma.201104618
[86] Oscurato, S. L. et al. Light-driven wettability tailoring of azopolymer surfaces with reconfigured three-dimensional posts. ACS Applied Materials & Interfaces 9, 30133-30142 (2017).
[87] Wu, H. et al. Large area metal micro-/nano-groove arrays with both structural color and anisotropic wetting fabricated by one-step focused laser interference lithography. Nanoscale 11, 4803-4810 (2019). doi: 10.1039/C8NR09747J
[88] Jiang, S. J. et al. Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio-inspired assimilatory coloration. Advanced Materials 31, 1807507 (2019). doi: 10.1002/adma.201807507
[89] Kusumaatmaja, H. et al. Anisotropic drop morphologies on corrugated surfaces. Langmuir 24, 7299-7308 (2008). doi: 10.1021/la800649a
[90] Rianna, C. et al. Reversible holographic patterns on azopolymers for guiding cell adhesion and orientation. ACS Applied Materials & Interfaces 7, 16984-16991 (2015).
[91] Cabezas, M. D. et al. Subcellular control over focal adhesion anisotropy, independent of cell morphology, dictates stem cell fate. ACS Nano 13, 11144-11152 (2019). doi: 10.1021/acsnano.9b03937
[92] Zhao, Y. J. et al. Bio-inspired variable structural color materials. Chemical Society Reviews 41, 3297-3317 (2012). doi: 10.1039/c2cs15267c
[93] Lee, S., Kang, H. S. & Park, J. K. Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials. Advanced Materials 24, 2069-2103 (2012). doi: 10.1002/adma.201104826
[94] Wang, W. et al. Deterministic reshaping of breath figure arrays by directional photomanipulation. ACS Applied Materials & Interfaces 9, 4223-4230 (2017).
[95] Wang, W. et al. Directional photo-manipulation of self-assembly patterned microstructures. Chinese Journal of Polymer Science 36, 297-305 (2018). doi: 10.1007/s10118-018-2087-x
[96] Kong, X. L. et al. Photomanipulated architecture and patterning of azopolymer array. ACS Applied Materials & Interfaces 9, 19345-19353 (2017).
[97] Li, Y. B. et al. Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene-containing random copolymer. Macromolecules 39, 1108-1115 (2006). doi: 10.1021/ma052272y
[98] Li, Y. B. et al. Photoinduced deformation of amphiphilic azo polymer colloidal spheres. Journal of the American Chemical Society 127, 2402-2403 (2005). doi: 10.1021/ja0424981
[99] Yang, B. W., Yu, M. M. & Yu, H. F. Azopolymer-based nanoimprint lithography: recent developments in methodology and applications. ChemPlusChem 85, 2166-2176 (2020). doi: 10.1002/cplu.202000495
[100] Wang, W. et al. Directional photomanipulation of breath figure arrays. Angewandte Chemie International Edition 53, 12116-12119 (2014). doi: 10.1002/anie.201407230
[101] Choi, J. et al. Photo-reconfigurable azopolymer etch mask: photofluidization-driven reconfiguration and edge rectangularization. Small 14, 1703250 (2018). doi: 10.1002/smll.201703250
[102] Choi, J. et al. Flexible and robust superomniphobic surfaces created by localized photofluidization of azopolymer pillars. ACS Nano 11, 7821-7828 (2017). doi: 10.1021/acsnano.7b01783
[103] Wu, Y. et al. Bioinspired design of three-dimensional ordered tribrachia-post arrays with re-entrant geometry for omniphobic and slippery surfaces. ACS Nano 11, 8265-8272 (2017). doi: 10.1021/acsnano.7b03433
[104] Utech, S. et al. Tailoring re-entrant geometry in inverse colloidal monolayers to control surface wettability. Journal of Materials Chemistry A 4, 6853-6859 (2016). doi: 10.1039/C5TA08992A
[105] Zhou, H. W. et al. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nature Chemistry 9, 145-151 (2017). doi: 10.1038/nchem.2625