[1] |
Duren, R. M. et al. Metrology, attitude, and orbit determination for spaceborne interferometric synthetic aperture radar. Proceedings of SPIE 3365, Acquisition, Tracking, and Pointing XII. Orlando, FL, USA: SPIE, 1998, 51-60. |
[2] |
Yang, Q. Z. et al. Design of a self-referenced laser scanning and ranging system. Measurement Science and Technology 36, 015037 (2025). doi: 10.1088/1361-6501/ad950d |
[3] |
Bosse, H. & Wilkening, G. Developments at PTB in nanometrology for support of the semiconductor industry. Measurement Science and Technology 16, 2155-2166 (2005). doi: 10.1088/0957-0233/16/11/005 |
[4] |
Sharma, E. et al. Evolution in lithography techniques: microlithography to nanolithography. Nanomaterials 12, 2754 (2022). doi: 10.3390/nano12162754 |
[5] |
Zhang, Y. H. et al. High-precision flatness measurement for cryogenic mosaic focal plane arrays. IEEE Transactions on Instrumentation and Measurement 72, 5021512 (2023). |
[6] |
Manuel, A. M. et al. Curvature wavefront sensing performance evaluation for active correction of the Large Synoptic Survey Telescope (LSST). Optics Express 18, 1528-1552 (2010). doi: 10.1364/OE.18.001528 |
[7] |
Deprez, M. et al. Piston and tilt interferometry for segmented wavefront sensing. Optics Letters 41, 1078-1081 (2016). doi: 10.1364/OL.41.001078 |
[8] |
Armano, M. et al. Sensor noise in LISA pathfinder: in-flight performance of the optical test mass readout. Physical Review Letters 126, 131103 (2021). doi: 10.1103/PhysRevLett.126.131103 |
[9] |
Zhang, D. Z. et al. Analytical modeling of piezoelectric 6-degree-of-freedom accelerometer about cross-coupling degree. Measurement 181, 109630 (2021). doi: 10.1016/j.measurement.2021.109630 |
[10] |
Zhou, S. Y. et al. Grating-corner-cube-based roll angle sensor. Sensors 20, 5524 (2020). doi: 10.3390/s20195524 |
[11] |
Hsieh, H. L. & Pan, S. W. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements. Optics Express 23, 2451-2465 (2015). doi: 10.1364/OE.23.002451 |
[12] |
Gao, W. et al. Measurement technologies for precision positioning. CIRP Annals 64, 773-796 (2015). doi: 10.1016/j.cirp.2015.05.009 |
[13] |
Ryll, M. et al. 6D interaction control with aerial robots: the flying end-effector paradigm. The International Journal of Robotics Research 38, 1045-1062 (2019). |
[14] |
Dejnabadi, H., Jolles, B. M. & Aminian, K. A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes. IEEE Transactions on Biomedical Engineering 52, 1478-1484 (2005). doi: 10.1109/TBME.2005.851475 |
[15] |
Abdelaal, M. et al. Uncalibrated stereo vision with deep learning for 6-DOF pose estimation for a robot arm system. Robotics and Autonomous Systems 145, 103847 (2021). doi: 10.1016/j.robot.2021.103847 |
[16] |
Xu, C. et al. Pose estimation from line correspondences: a complete analysis and a series of solutions. IEEE Transactions on Pattern Analysis and Machine Intelligence 39, 1209-1222 (2017). doi: 10.1109/TPAMI.2016.2582162 |
[17] |
Wang, H. C. , Moriconi, S. & Sawhney, K. Nano-precision metrology of X-ray mirrors with laser speckle angular measurement. Light: Science & Applications 10, 195 (2021). |
[18] |
Ma, D. et al. Method and system for simultaneously measuring six degrees of freedom motion errors of a rotary axis based on a semiconductor laser. Optics Express 31, 24127-24141 (2023). doi: 10.1364/OE.493982 |
[19] |
Yu, A., Bonev, I. A. & Zsombor-Murray, P. Geometric approach to the accuracy analysis of a class of 3-DOF planar parallel robots. Mechanism and Machine Theory 43, 364-375 (2008). doi: 10.1016/j.mechmachtheory.2007.03.002 |
[20] |
Geckeler, R. D. et al. Autocollimators for deflectometry: current status and future progress. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 616, 140-146 (2010). |
[21] |
Cui, C. X. et al. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser. Optics Express 24, 6735-6748 (2016). doi: 10.1364/OE.24.006735 |
[22] |
Li, R. P. et al. Three-degree-of-freedom autocollimator with large angle-measurement range. Measurement Science and Technology 32, 115005 (2021). doi: 10.1088/1361-6501/ac1236 |
[23] |
Gao, W. et al. A three-axis autocollimator for detection of angular error motions of a precision stage. CIRP Annals 60, 515-518 (2011). doi: 10.1016/j.cirp.2011.03.052 |
[24] |
Shimizu, Y., Matsukuma, H. & Gao, W. Optical sensors for multi-axis angle and displacement measurement using grating reflectors. Sensors 19, 5289 (2019). doi: 10.3390/s19235289 |
[25] |
Jäger, G. et al. The metrological basis and operation of nanopositioning and nanomeasuring machine NMM-1. tm-Technisches Messen 76, 227-234 (2009). doi: 10.1524/teme.2009.0960 |
[26] |
Zhou, S. Y. et al. Dual-comb spectroscopy resolved three-degree-of-freedom sensing. Photonics Research 9, 243-251 (2021). doi: 10.1364/PRJ.412898 |
[27] |
Li, X. H. et al. A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage. Precision Engineering 37, 771-781 (2013). doi: 10.1016/j.precisioneng.2013.03.005 |
[28] |
Sirohi, R. Shearography and its applications – a chronological review. Light: Advanced Manufacturing 3, 35-64 (2022). |
[29] |
Shi, L. L. et al. A targetless method for simultaneously measuring three-degree-of-freedom angular motion errors with digital speckle pattern interferometry. Sensors 23, 3393 (2023). doi: 10.3390/s23073393 |
[30] |
Zhu, K. Y. et al. Single-spot two-dimensional displacement measurement based on self-mixing interferometry. Optica 4, 729-735 (2017). |
[31] |
Xu, X., Dai, Z. R. & Tan, Y. D. A dual-beam differential method based on feedback interferometry for noncontact measurement of linear and angular displacement. IEEE Transactions on Industrial Electronics 70, 6405-6413 (2023). doi: 10.1109/TIE.2022.3192677 |
[32] |
Hu, P. C. et al. A dual-axis optoelectronic inclinometer based on wavefront interference fringes. IEEE Transactions on Instrumentation and Measurement 72, 1004306 (2023). |
[33] |
Lou, Y. T. et al. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology. Optics Express 25, 6805-6821 (2017). doi: 10.1364/OE.25.006805 |
[34] |
Meshksar, N. et al. Applying differential wave-front sensing and differential power sensing for simultaneous precise and wide-range test-mass rotation measurements. Sensors 21, 164 (2021). |
[35] |
de Groot, P. Principles of interference microscopy for the measurement of surface topography. Advances in Optics and Photonics 7, 1-65 (2015). doi: 10.1364/AOP.7.000001 |
[36] |
Su, R. & Leach, R. Physics-based virtual coherence scanning interferometer for surface measurement. Light: Advanced Manufacturing 2, 9 (2021). doi: 10.37188/lam.2021.001 |
[37] |
Fortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Communications Physics 2, 153 (2019). |
[38] |
Jang, Y. S. & Kim, S. W. Distance measurements using mode-locked lasers: a review. Nanomanufacturing and Metrology 1, 131-147 (2018). doi: 10.1007/s41871-018-0017-8 |
[39] |
Ye, J. Absolute measurement of a long, arbitrary distance to less than an optical fringe. Optics Letters 29, 1153-1155 (2004). doi: 10.1364/OL.29.001153 |
[40] |
Lee, J. et al. Time-of-flight measurement with femtosecond light pulses. Nature Photonics 4, 716-720 (2010). doi: 10.1038/nphoton.2010.175 |
[41] |
Lippok, N. et al. Extended coherence length and depth ranging using a Fourier-domain mode-locked frequency comb and circular interferometric ranging. Physical Review Applied 11, 014018 (2019). doi: 10.1103/PhysRevApplied.11.014018 |
[42] |
Shi, L. H. et al. Femtosecond-laser-based full-field three-dimensional imaging with phase compensation. Optics Express 31, 21899-21910 (2023). doi: 10.1364/OE.494312 |
[43] |
Wang, Y., Xiong, S. L. & Wu, G. H. Femtosecond laser-based phase-shifting interferometry for optical surface measurement. Review of Scientific Instruments 89, 113105 (2018). doi: 10.1063/1.5057400 |
[44] |
Nelson, J. , Mast, T. & Chanan, G. Segmented mirror telescopes. in Planets, Stars and Stellar Systems: Volume 1: Telescopes and Instrumentation (eds Oswalt, T. D. & McLean, I. S. ) (Dordrecht: Springer, 2013), 99-136. |
[45] |
Zhang, Y. F. et al. Conceptual design of the optical system of the 6.5m wide field multiplexed survey telescope with excellent image quality. PhotoniX 4, 16 (2023). |
[46] |
Dharmadhikari, R., Parihar, P. & Jacob, A. Building a large affordable optical-NIR telescope (I): an alternate way to handle segmented primary mirror. Experimental Astronomy 56, 569-604 (2023). doi: 10.1007/s10686-023-09900-0 |
[47] |
Pan, B. Recent progress in digital image correlation. Experimental Mechanics 51, 1223-1235 (2011). doi: 10.1007/s11340-010-9418-3 |
[48] |
Li, H. et al. Online precise motion measurement of 3-DOF nanopositioners based on image correlation. IEEE Transactions on Instrumentation and Measurement 68, 782-790 (2019). doi: 10.1109/TIM.2018.2853378 |