[1] |
Stroke, G. W. Lensless Fourier-transform method for optical holography. Applied Physics Letters 6, 201-203 (1965). doi: 10.1063/1.1754131 |
[2] |
Reicherter, M. et al. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Optics Letters 24, 608-610 (1999). doi: 10.1364/OL.24.000608 |
[3] |
Haist, T., Schönleber, M. & Tiziani, H. J. Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays. Optics Communications 140, 299-308 (1997). doi: 10.1016/S0030-4018(97)00192-2 |
[4] |
Granero, L. et al. Superresolution imaging method using phase-shifting digital lensless Fourier holography. Optics Express 17, 15008-15022 (2009). doi: 10.1364/OE.17.015008 |
[5] |
Kiire, T., Nakadate, S. & Shibuya, M. Digital holography with a quadrature phase-shifting interferometer. Applied Optics 48, 1308-1315 (2009). doi: 10.1364/AO.48.001308 |
[6] |
Chang, C. L. et al. Speckle reduced lensless holographic projection from phase-only computer-generated hologram. Optics Express 25, 6568-6580 (2017). doi: 10.1364/OE.25.006568 |
[7] |
Singh, R. K., Vyas, S. & Miyamoto, Y. Lensless Fourier transform holography for coherence waves. Journal of Optics 19, 115705 (2017). doi: 10.1088/2040-8986/aa8b8f |
[8] |
Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713 |
[9] |
Yang, Y. M. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Letters 14, 1394-1399 (2014). doi: 10.1021/nl4044482 |
[10] |
Lin, D. M. et al. Dielectric gradient metasurface optical elements. Science 345, 298-302 (2014). doi: 10.1126/science.1253213 |
[11] |
Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nature Nanotechnology 14, 227-231 (2019). doi: 10.1038/s41565-018-0347-0 |
[12] |
Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190-1194 (2016). doi: 10.1126/science.aaf6644 |
[13] |
Zhao, Y., Belkin, M. A. & Alù, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nature Communications 3, 870 (2012). doi: 10.1038/ncomms1877 |
[14] |
Zeng, J. W. et al. Generating and separating twisted light by gradient–rotation split-ring antenna metasurfaces. Nano Letters 16, 3101-3108 (2016). doi: 10.1021/acs.nanolett.6b00360 |
[15] |
Wang, B. et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Letters 16, 5235-5240 (2016). doi: 10.1021/acs.nanolett.6b02326 |
[16] |
Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology 10, 308-312 (2015). doi: 10.1038/nnano.2015.2 |
[17] |
Ni, X. J., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nature Communications 4, 2807 (2013). doi: 10.1038/ncomms3807 |
[18] |
Fang, X. Y., Ren, H. R. & Gu, M. Orbital angular momentum holography for high-security encryption. Nature Photonics 14, 102-108 (2020). doi: 10.1038/s41566-019-0560-x |
[19] |
Lee, G. Y. et al. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale 10, 4237-4245 (2018). doi: 10.1039/C7NR07154J |
[20] |
Li, P. et al. Optical vortex knots and links via holographic metasurfaces. Advances in Physics: X 6, 1843535 (2021). |
[21] |
Ren, H. R. et al. Metasurface orbital angular momentum holography. Nature Communications 10, 2986 (2019). doi: 10.1038/s41467-019-11030-1 |
[22] |
Song, Q. H. et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nature Communications 11, 2651 (2020). doi: 10.1038/s41467-020-16437-9 |
[23] |
Wang, Q. et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Scientific Reports 6, 32867 (2016). doi: 10.1038/srep32867 |
[24] |
Xie, Z. W. et al. Meta-holograms with full parameter control of wavefront over a 1000 nm bandwidth. ACS Photonics 4, 2158-2164 (2017). doi: 10.1021/acsphotonics.7b00710 |
[25] |
Zhao, W. Y. et al. Full-color hologram using spatial multiplexing of dielectric metasurface. Optics Letters 41, 147-150 (2016). doi: 10.1364/OL.41.000147 |
[26] |
Zhou, H. Q. et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography. ACS Nano 14, 5553-5559 (2020). doi: 10.1021/acsnano.9b09814 |
[27] |
Shi, Y. Y. et al. Augmented reality enabled by on‐chip meta‐holography multiplexing. Laser & Photonics Reviews 16, 2100638 (2022). |
[28] |
Li, Z. et al. On‐chip direction‐multiplexed meta‐optics for high‐capacity 3D holography. Advanced Functional Materials 34, 2312705 (2024). doi: 10.1002/adfm.202312705 |
[29] |
Fu, S. Y. et al. Orbital angular momentum comb generation from azimuthal binary phases. Advanced Photonics Nexus 1, 016003 (2022). |
[30] |
Park, J. H. & Lee, B. Holographic techniques for augmented reality and virtual reality near-eye displays. Light: Advanced Manufacturing 3, 137-150 (2022). |
[31] |
Wen, D. D. et al. Helicity multiplexed broadband metasurface holograms. Nature Communications 6, 8241 (2015). doi: 10.1038/ncomms9241 |
[32] |
Li, Y. et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Advanced Optical Materials 5, 1600502 (2017). doi: 10.1002/adom.201600502 |
[33] |
Deng, Z. L. & Li, G. X. Metasurface optical holography. Materials Today Physics 3, 16-32 (2017). doi: 10.1016/j.mtphys.2017.11.001 |
[34] |
Hu, Y. Q. et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications. Nanophotonics 9, 3755-3780 (2020). doi: 10.1515/nanoph-2020-0220 |
[35] |
Overvig, A. C. et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light: Science & Applications 8, 92 (2019). |
[36] |
Xiong, B. et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379, 294-299 (2023). doi: 10.1126/science.ade5140 |
[37] |
Zhao, R. Z. et al. Controllable polarization and diffraction modulated multi‐functionality based on metasurface. Advanced Optical Materials 10, 2102596 (2022). doi: 10.1002/adom.202102596 |
[38] |
Zhao, R. Z. et al. Stereo jones matrix holography with longitudinal polarization transformation. Laser & Photonics Reviews 17, 2200982 (2023). |
[39] |
Deng, Z. L. et al. Diatomic metasurface for vectorial holography. Nano Letters 18, 2885-2892 (2018). doi: 10.1021/acs.nanolett.8b00047 |
[40] |
Deng, Z. L. et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces. Advanced Functional Materials 30, 1910610 (2020). doi: 10.1002/adfm.201910610 |
[41] |
Deng, Z. L. et al. Multi-freedom metasurface empowered vectorial holography. Nanophotonics 11, 1725-1739 (2022). doi: 10.1515/nanoph-2021-0662 |
[42] |
Wen, D. D. et al. Vectorial holograms with spatially continuous polarization distributions. Nano Letters 21, 1735-1741 (2021). doi: 10.1021/acs.nanolett.0c04555 |
[43] |
Li, Z. F. et al. Polarization-multiplexed broadband hologram on all-dielectric metasurface. Europhysics Letters 124, 14003 (2018). doi: 10.1209/0295-5075/124/14003 |
[44] |
Wang, Z. C. et al. Polarization-multiplexed Huygens metasurface holography. Optics Letters 45, 5488-5491 (2020). doi: 10.1364/OL.403060 |
[45] |
Rubin, N. A. et al. Jones matrix holography with metasurfaces. Science Advances 7, eabg7488 (2021). doi: 10.1126/sciadv.abg7488 |
[46] |
Zhu, W. et al. Polarization-multiplexed silicon metasurfaces for multi-channel visible light modulation. Advanced Functional Materials 32, 2200013 (2022). doi: 10.1002/adfm.202200013 |
[47] |
Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019). doi: 10.1126/science.aax1839 |
[48] |
Jin, L. et al. Dielectric multi-momentum meta-transformer in the visible. Nature Communications 10, 4789 (2019). doi: 10.1038/s41467-019-12637-0 |
[49] |
Maguid, E. et al. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light: Science & Applications 6, e17027 (2017). |
[50] |
Gou, Y. et al. Non‐interleaved four‐channel metasurfaces for simultaneous printing and holographic imaging. Small Structures 4, 2300054 (2023). doi: 10.1002/sstr.202300054 |
[51] |
Ren, H. R. et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nature Nanotechnology 15, 948-955 (2020). doi: 10.1038/s41565-020-0768-4 |
[52] |
Zeng, J. W. et al. Full-dimensional geometric-phase spatial light metamodulation. Nano Letters 24, 9229-9236 (2024). doi: 10.1021/acs.nanolett.4c01665 |
[53] |
Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proceeding of the Royal Society A: Mathematical, Physical and Engineering Sciences 392, 45-57 (1984). |
[54] |
Bomzon, Z., Kleiner, V. & Hasman, E. Computer-generated space-variant polarization elements with subwavelength metal stripes. Optics Letters 26, 33-35 (2001). doi: 10.1364/OL.26.000033 |