[1] Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010). doi: 10.1103/RevModPhys.82.3045
[2] Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011). doi: 10.1103/RevModPhys.83.1057
[3] Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2018). doi: 10.1103/RevModPhys.91.015006
[4] Zhang, X., Xiao, M., Cheng, Y., Lu, M.-H. & Christensen, J. Topological sound. Commun. Phys. 1, 97 (2018).
[5] Huber, S. D. Topological mechanics. Nat. Phys. 12, 621–623 (2016). doi: 10.1038/nphys3801
[6] Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008). doi: 10.1103/PhysRevLett.100.013904
[7] Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljačić, M. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 013905 (2008). doi: 10.1103/PhysRevLett.100.013905
[8] Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009). doi: 10.1038/nature08293
[9] Umucalilar, R. O. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 43804 (2011). doi: 10.1103/PhysRevA.84.043804
[10] Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011). doi: 10.1038/nphys2063
[11] Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics 6, 782–787 (2012). doi: 10.1038/nphoton.2012.236
[12] Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013). doi: 10.1038/nmat3520
[13] Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013). doi: 10.1038/nature12066
[14] Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photonics 7, 1001–1005 (2013). doi: 10.1038/nphoton.2013.274
[15] Liang, G. Q. & Chong, Y. D. Optical resonator analog of a two-dimensional topological insulator. Phys. Rev. Lett. 110, 203904 (2013). doi: 10.1103/PhysRevLett.110.203904
[16] Wu, L.-H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015). doi: 10.1103/PhysRevLett.114.223901
[17] Ma, T. & Shvets, G. All-Si valley-Hall photonic topological insulator. New J. Phys. 18, 025012 (2016).
[18] Dong, J. W., Chen, X. D., Zhu, H., Wang, Y. & Zhang, X. Valley photonic crystals for control of spin and topology. Nat. Mater. 16, 298 (2017). doi: 10.1038/nmat4807
[19] Bandres, M. A., Rechtsman, M. C. & Segev, M. Topological photonic quasicrystals: fractal topological spectrum and protected transport. Phys. Rev. X 6, 011016 (2016).
[20] Stützer, S. et al. Photonic topological Anderson insulators. Nature 560, 461–465 (2018). doi: 10.1038/s41586-018-0418-2
[21] Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185 (1982). doi: 10.1103/PhysRevB.25.2185
[22] Hatsugai, Y. Chern number and Edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697 (1993). doi: 10.1103/PhysRevLett.71.3697
[23] Szameit, A. et al. Discrete optics in femtosecond-laser-written photonic structures. J. Phys. Mol. Opt. Phys. 43, 163001 (2010). doi: 10.1088/0953-4075/43/16/163001
[24] Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006). doi: 10.1016/j.aop.2005.10.005
[25] Mitchell, N. P. et al. Amorphous topological insulators constructed from random point sets. Nat. Phys. 14, 380–385 (2018). doi: 10.1038/s41567-017-0024-5
[26] Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018). doi: 10.1126/science.aar4005
[27] Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018). doi: 10.1126/science.aar4003
[28] Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017). doi: 10.1126/science.aao4551
[29] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011). doi: 10.1038/nphys1926
[30] Pai, S. & Prem, A. Topological states on fractal lattices. Phys. Rev. B 100, 155135 (2019). During the preparation of this paper, we noticed theoretical proposals of the topological states in electronic fractal systems [28–30], which are different from our periodically driven systems. To our knowledge, the ideas suggested in those pioneering papers do not conform to any known material system.
[31] Iliasov, A. A., Katsnelson, M. I. & Yuan, S. Hall conductivity of a Sierpinski carpet. Phys. Rev. B 101, 045413 (2020). doi: 10.1103/PhysRevB.101.045413
[32] Fremling, M., van Hooft, M., Smith, C. M. & Fritz, L. Existence of robust edge currents in Sierpinski fractals. Phys. Rev. Res. 2, 013044 (2020). doi: 10.1103/PhysRevResearch.2.013044