[1] Huang, D. et al. Optical coherence tomography. Science 254, 1178-1181 (1991). doi: 10.1126/science.1957169
[2] Robles, F. E., Wilson, C., Grant, G. & Wax, A. Molecular imaging true-colour spectroscopic optical coherence tomography. Nat. Photonics 5, 744-747 (2011). doi: 10.1038/nphoton.2011.257
[3] Chen, C. L. & Wang, R. K. Optical coherence tomography based angiography [Invited]. Biomed. Opt. Express 8, 1056-1082 (2017). doi: 10.1364/BOE.8.001056
[4] Yi, J. et al. Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography. J. Biomed. Opt. 19, 036013 (2014). doi: 10.1117/1.JBO.19.3.036013
[5] Chen, Z. P. et al. Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt. Lett. 22, 1119-1121 (1997). doi: 10.1364/OL.22.001119
[6] Leitgeb, R. A. et al. Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt. Express 11, 3116-3121 (2003). doi: 10.1364/OE.11.003116
[7] Barton, J. K. & Stromski, S. Flow measurement without phase information in optical coherence tomography images. Opt. Express 13, 5234-5239 (2005). doi: 10.1364/OPEX.13.005234
[8] Fingler, J., Schwartz, D., Yang, C. & Fraser, S. E. Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. Opt. Express 15, 12636-12653 (2007). doi: 10.1364/OE.15.012636
[9] Makita, S., Hong, Y., Yamanari, M., Yatagai, T. & Yasuno, Y. Optical coherence angiography. Opt. Express 14, 7821-7840 (2006). doi: 10.1364/OE.14.007821
[10] Fingler, J., Zawadzki, R. J., Werner, J. S., Schwartz, D. & Fraser, S. E. Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique. Opt. Express 17, 22190-22200 (2009). doi: 10.1364/OE.17.022190
[11] Zhu, D., Wang, J., Zhi, Z. W., Wen, X. & Luo, Q. M. Imaging dermal blood flow through the intact rat skin with an optical clearing method. J. Biomed. Opt. 15, 026008 (2010). doi: 10.1117/1.3369739
[12] Spaide, R. F., Fujimoto, J. G. & Waheed, N. K. Image artifacts in optical coherence tomography angiography. Retina 35, 2163-2180 (2015). doi: 10.1097/IAE.0000000000000765
[13] Robles, F. E., Chowdhury, S. & Wax, A. Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics. Biomed. Opt. Express 1, 310-317 (2010). doi: 10.1364/BOE.1.000310
[14] Li, Y. L., Seekell, K., Yuan, H., Robles, F. E. & Wax, A. Multispectral nanoparticle contrast agents for true-color spectroscopic optical coherence tomography. Biomed. Opt. Express 3, 1914-1923 (2012). doi: 10.1364/BOE.3.001914
[15] Chong, S. P., Merkle, C. W., Leahy, C., Radhakrishnan, H. & Srinivasan, V. J. Quantitative microvascular hemoglobin mapping using visible light spectroscopic optical coherence tomography. Biomed. Opt. Express 6, 1429-1450 (2015). doi: 10.1364/BOE.6.001429
[16] Pi, S. H. et al. Automated spectroscopic retinal oximetry with visible-light optical coherence tomography. Biomed. Opt. Express 9, 2056-2067 (2018). doi: 10.1364/BOE.9.002056
[17] Chen, S., Yi, J. & Zhang, H. F. Measuring oxygen saturation in retinal and choroidal circulations in rats using visible light optical coherence tomography angiography. Biomed. Opt. Express 6, 2840-2853 (2015). doi: 10.1364/BOE.6.002840
[18] Chen, S. Y. et al. Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography. Biomed. Opt. Express 7, 3377-3389 (2016). doi: 10.1364/BOE.7.003377
[19] Yi, J. et al. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation. Light Sci. Appl. 4, e334 (2015). doi: 10.1038/lsa.2015.107
[20] Liu, R. R. et al. Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography. Light Sci. Appl. 7, 57 (2018). doi: 10.1038/s41377-018-0057-2
[21] Michel, J. B., Virmani, R., Arbustini, E. & Pasterkamp, G. Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur. Heart J. 32, 1977-1985 (2011). doi: 10.1093/eurheartj/ehr054
[22] Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37 (2013). doi: 10.1088/0031-9155/58/11/R37
[23] Chen, S. Y., Shu, X., Yi, J., Fawzi, A. A. & Zhang, H. F. Dual-band optical coherence tomography using a single supercontinuum laser source. J. Biomed. Opt. 21, 066013 (2016). doi: 10.1117/1.JBO.21.6.066013
[24] Liu, R. R. et al. Theoretical model for optical oximetry at the capillary level: exploring hemoglobin oxygen saturation through backscattering of single red blood cells. J. Biomed. Opt. 22, 025002 (2017). doi: 10.1117/1.JBO.22.2.025002
[25] Van Heel, M. & Schatz, M. Fourier shell correlation threshold criteria. J. Struct. Biol. 151, 250-262 (2005). doi: 10.1016/j.jsb.2005.05.009
[26] Winkelmann, J. A. et al. In vivo broadband visible light optical coherence tomography probe enables inverse spectroscopic analysis. Opt. Lett. 43, 619-622 (2018). doi: 10.1364/OL.43.000619
[27] Wojtkowski, M. et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express 12, 2404-2422 (2004). doi: 10.1364/OPEX.12.002404
[28] Jia, Y. L. et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt. Express 20, 4710-4725 (2012). doi: 10.1364/OE.20.004710
[29] Araki, K. et al. Comparison of mucosal microvasculature between the proximal and distal human colon. J. Electron. Microsc. 45, 202-206 (1996). doi: 10.1093/oxfordjournals.jmicro.a023433