[1] King, H. C. The History of the Telescope (Dover Publications, 1979).
[2] Hair, J. W. et al. Airborne high spectral resolution lidar for profiling aerosol optical properties. Appl. Opt. 47, 6734-6752 (2008). doi: 10.1364/AO.47.006734
[3] Betzig, E. & Trautman, J. K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189-195 (1992). doi: 10.1126/science.257.5067.189
[4] Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787-2809 (2004).
[5] Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219-225 (2008). doi: 10.1038/nphoton.2008.47
[6] Hecht, J. Lidar for self-driving cars. Opt. Photonics N. 29, 26-33 (2018). doi: 10.1364/OPN.29.1.000026
[7] Hedili, M. K. et al. Light-efficient augmented reality display with steerable eyebox. Opt. Express 27, 12572-12581 (2019). doi: 10.1364/OE.27.012572
[8] Li, J. W. et al. Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use. Light Sci. Appl. 9, 124 (2020). doi: 10.1038/s41377-020-00365-w
[9] McManamon, P. F. et al. A review of phased array steering for narrow-band electrooptical systems. Proc. IEEE 97, 1078-1096 (2009). doi: 10.1109/JPROC.2009.2017218
[10] He, Z. Q. et al. Liquid crystal beam steering devices: principles, recent advances, and future developments. Crystals 9, 292 (2019). doi: 10.3390/cryst9060292
[11] Zhang, Z. C., You, Z. & Chu, D. P. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci. Appl. 3, e213 (2014). doi: 10.1038/lsa.2014.94
[12] Li, S. Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087-1090 (2019). doi: 10.1126/science.aaw6747
[13] Qin, S. Y. et al. Liquid crystal-optical phased arrays (LC-OPA)-based optical beam steering with microradian resolution enabled by double gratings. Appl. Opt. 58, 4091-4098 (2019). doi: 10.1364/AO.58.004091
[14] Kobashi, J., Yoshida, H. & Ozaki, M. Planar optics with patterned chiral liquid crystals. Nat. Photonics 10, 389-392 (2016). doi: 10.1038/nphoton.2016.66
[15] Chen, P. et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics. Adv. Mater. 32, 1903665 (2020).
[16] Tabiryan, N. et al. New 4G optics technology extends limits to the extremes. Photonics Spectra 51, 46-50 (2017).
[17] Chigrinov, V. G. Liquid Crystal Photonics (Nova Science Publishers, Inc., 2014).
[18] Zhan, T. et al. Pancharatnam-Berry optical elements for head-up and near-eye displays. J. Opt. Soc. Am. B 36, D52-D65 (2019). doi: 10.1364/JOSAB.36.000D52
[19] Schadt, M. et al. Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers. Jpn. J. Appl. Phys. 31, 2155-2164 (1992). doi: 10.1143/JJAP.31.2155
[20] Chigrinov, V. G., Kozenkov, V. M. & Kwok, H. S. Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, Ltd., 2008).
[21] Schadt, M., Seiberle, H. & Schuster, A. Optical patterning of multi-domain liquid-crystal displays with wide viewing angles. Nature 381, 212-215 (1996). doi: 10.1038/381212a0
[22] Kim, J. et al. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica 2, 958-964 (2015). doi: 10.1364/OPTICA.2.000958
[23] Nersisyan, S. R. et al. Characterization of optically imprinted polarization gratings. Appl. Opt. 48, 4062-4067 (2009). doi: 10.1364/AO.48.004062
[24] He, Z. Q. et al. Switchable Pancharatnam-Berry microlens array with nano-imprinted liquid crystal alignment. Opt. Lett. 43, 5062-5065 (2018). doi: 10.1364/OL.43.005062
[25] Wu, H. et al. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system. Opt. Express 20, 16684-16689 (2012). doi: 10.1364/OE.20.016684
[26] Gao, K. et al. Thin-film Pancharatnam lens with low f-number and high quality. Opt. Express 23, 26086-26094 (2015). doi: 10.1364/OE.23.026086
[27] Tabiryan, N. V. et al. Broadband waveplate lenses. Opt. Express 24, 7091-7102 (2016). doi: 10.1364/OE.24.007091
[28] Jiang, M. et al. Low f-number diffraction-limited pancharatnam-berry microlenses enabled by plasmonic photopatterning of liquid crystal polymers. Adv. Mater. 31, 1808028 (2019). doi: 10.1002/adma.201808028
[29] Oh, C. & Escuti, M. J. Achromatic diffraction from polarization gratings with high efficiency. Opt. Lett. 33, 2287-2289 (2008). doi: 10.1364/OL.33.002287
[30] Zou, J. Y. et al. Broadband wide-view Pancharatnam-Berry phase deflector. Opt. Express 28, 4921-4927 (2020). doi: 10.1364/OE.385540
[31] Nersisyan, S. R. et al. Improving vector vortex waveplates for high-contrast coronagraphy. Opt. Express 21, 8205-8213 (2013). doi: 10.1364/OE.21.008205
[32] Chen, P. et al. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater. 30, 1705865 (2018). doi: 10.1002/adma.201705865
[33] Slussarenko, S. et al. Tunable liquid crystal q-plates with arbitrary topological charge. Opt. Express 19, 4085-4090 (2011). doi: 10.1364/OE.19.004085
[34] Yin, K., He, Z. Q. & Wu, S. T. Reflective polarization volume lens with small f-number and large diffraction angle. Adv. Opt. Mater. 8, 2000170 (2020). doi: 10.1002/adom.202000170
[35] Xiang, X. et al. Nanoscale liquid crystal polymer Bragg polarization gratings. Opt. Express 25, 19298-19308 (2017). doi: 10.1364/OE.25.019298
[36] Yin, K. et al. Stretchable, flexible, rollable, and adherable polarization volume grating film. Opt. Express 27, 5814-5823 (2019). doi: 10.1364/OE.27.005814
[37] Shen, Z. X. et al. Planar terahertz photonics mediated by liquid crystal polymers. Adv. Opt. Mater. 8, 1902124 (2020). doi: 10.1002/adom.201902124
[38] Zola, R. S. et al. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings. Adv. Mater. 31, 1806172 (2019). doi: 10.1002/adma.201806172
[39] Chen, P. et al. Chirality invertible superstructure mediated active planar optics. Nat. Commun. 10, 2518 (2019). doi: 10.1038/s41467-019-10538-w
[40] Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016). doi: 10.1038/ncomms13682
[41] Arbabi, A. et al. Planar metasurface retroreflector. Nat. Photonics 11, 415-420 (2017). doi: 10.1038/nphoton.2017.96
[42] Xiong, J. H., Zhan, T. & Wu, S. T. A versatile method for fabricating Pancharatnam-Berry micro-optical elements. Opt. Express 27, 27831-27840 (2019). doi: 10.1364/OE.27.027831
[43] Glytsis, E. N. & Gaylord, T. K. Three-dimensional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction. J. Opt. Soc. Am. A 7, 1399-1420 (1990). doi: 10.1364/JOSAA.7.001399
[44] Vernon, J. P. et al. Recording polarization gratings with a standing spiral wave. Appl. Phys. Lett. 103, 201101 (2013). doi: 10.1063/1.4829742
[45] He, Z. Q., Yin, K. & Wu, S. T. Standing wave polarization holography for realizing liquid crystal Pancharatnum-Berry phase lenses. Opt. Express 28, 21729-21736 (2020). doi: 10.1364/OE.399036
[46] Li, Y. et al. Single-exposure fabrication of tunable Pancharatnam-Berry devices using a dye-doped liquid crystal. Opt. Express 27, 9054-9060 (2019). doi: 10.1364/OE.27.009054