[1] Kawata, S. et al. Finer features for functional microdevices. Nature 412, 697–698 (2001). doi: 10.1038/35089130
[2] Juodkazis, S. et al. Mechanical properties and tuning of three-dimensional polymeric photonic crystals. Appl. Phys. Lett. 91, 241904 (2007). doi: 10.1063/1.2822825
[3] Ergin, T. et al. Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010). doi: 10.1126/science.1186351
[4] von Freymann, G. et al. Three-dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038–1052 (2010). doi: 10.1002/adfm.200901838
[5] Liu, Y. J. et al. Structural color three-dimensional printing by shrinking photonic crystals. Nat. Commun. 10, 4340 (2019). doi: 10.1038/s41467-019-12360-w
[6] Sun, Y. L. et al. Protein-based soft micro-optics fabricated by femtosecond laser direct writing. Light Sci. Appl. 3, e129 (2014). doi: 10.1038/lsa.2014.10
[7] Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 10, 554–560 (2016). doi: 10.1038/nphoton.2016.121
[8] Jonušauskas, L. et al. Optically clear and resilient free-form µ-optics 3D-printed via ultrafast laser lithography. Materials 10, 12 (2017). doi: 10.3390/ma10010012
[9] Wang, B. K., Zhang, Q. M. & Gu, M. Aspherical microlenses enabled by two-photon direct laser writing for fiber-optical microendoscopy. Optical Mater. Express 10, 3174–3184 (2020). doi: 10.1364/OME.402904
[10] Ocier, C. R. et al. Direct laser writing of volumetric gradient index lenses and waveguides. Light Sci. Appl. 9, 196 (2020). doi: 10.1038/s41377-020-00431-3
[11] Huang, T. Y. et al. 3D printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents. Adv. Mater. 27, 6644–6650 (2015). doi: 10.1002/adma.201503095
[12] Spiegel, C. A. et al. 4D printing at the microscale. Adv. Funct. Mater. 30, 1907615 (2020). doi: 10.1002/adfm.201907615
[13] Ma, Z. C. et al. Femtosecond laser programmed artificial musculoskeletal systems. Nat. Commun. 11, 4536 (2020). doi: 10.1038/s41467-020-18117-0
[14] Elliott, L. V., Salzman, E. E. & Greer, J. R. Stimuli responsive shape memory microarchitectures. Adv. Funct. Mater. 31, 2008380 (2021). doi: 10.1002/adfm.202008380
[15] Bauer, J. et al. Nanolattices: an emerging class of mechanical metamaterials. Adv. Mater. 29, 1701850 (2017). doi: 10.1002/adma.201701850
[16] Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072–1074 (2017). doi: 10.1126/science.aao4640
[17] Qu, J. Y. et al. Micro-structured two-component 3D metamaterials with negative thermal-expansion coefficient from positive constituents. Sci. Rep. 7, 40643 (2017). doi: 10.1038/srep40643
[18] Frenzel, T. et al. Large characteristic lengths in 3D chiral elastic metamaterials. Commun. Mater. 2, 4 (2021). doi: 10.1038/s43246-020-00107-w
[19] Maruo, S. & Inoue, H. Optically driven viscous micropump using a rotating microdisk. Appl. Phys. Lett. 91, 084101 (2007). doi: 10.1063/1.2768631
[20] Kumi, G. et al. High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios. Lab Chip 10, 1057–1060 (2010). doi: 10.1039/b923377f
[21] Xu, B. et al. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication. Sci. Rep. 6, 19989 (2016). doi: 10.1038/srep19989
[22] Selimis, A., Mironov, V. & Farsari, M. Direct laser writing: principles and materials for scaffold 3D printing. Microelectron. Eng. 132, 83–89 (2015). doi: 10.1016/j.mee.2014.10.001
[23] Sun, Y. L. et al. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists. Nat. Commun. 6, 8612 (2015). doi: 10.1038/ncomms9612
[24] Song, J. X. et al. From simple to architecturally complex hydrogel scaffolds for cell and tissue engineering applications: opportunities presented by two-photon polymerization. Adv. Healthc. Mater. 9, 1901217 (2020). doi: 10.1002/adhm.201901217
[25] Skliutas, E. et al. Polymerization mechanisms initiated by spatio-temporally confined light. Nanophotonics 10, 1211–1242 (2021). doi: 10.1515/nanoph-2020-0551
[26] Matsuo, S., Juodkazis, S. & Misawa, H. Femtosecond laser microfabrication of periodic structures using a microlens array. Appl. Phys. A 80, 683–685 (2005). doi: 10.1007/s00339-004-3108-x
[27] Kato, J. I. et al. Multiple-spot parallel processing for laser micronanofabrication. Appl. Phys. Lett. 86, 044102 (2005). doi: 10.1063/1.1855404
[28] Obata, K. et al. Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Opt. Express 18, 17193–17200 (2010). doi: 10.1364/OE.18.017193
[29] Vizsnyiczai, G., Kelemen, L. & Ormos, P. Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms. Opt. Express 22, 24217–24223 (2014). doi: 10.1364/OE.22.024217
[30] Yang, L. et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Opt. Lasers Eng. 70, 26–32 (2015). doi: 10.1016/j.optlaseng.2015.02.006
[31] Zhang, Z. Y. et al. Highly uniform parallel microfabrication using a large numerical aperture system. Appl. Phys. Lett. 109, 021109 (2016). doi: 10.1063/1.4955477
[32] Geng, Q. et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10, 2179 (2019). doi: 10.1038/s41467-019-10249-2
[33] Manousidaki, M. et al. 3D holographic light shaping for advanced multiphoton polymerization. Opt. Lett. 45, 85–88 (2020). doi: 10.1364/OL.45.000085
[34] Hahn, V. et al. Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials. Adv. Funct. Mater. 30, 1907795 (2020). doi: 10.1002/adfm.201907795
[35] Jenness, N. J. et al. A versatile diffractive maskless lithography for single-shot and serial microfabrication. Opt. Express 18, 11754–11762 (2010). doi: 10.1364/OE.18.011754
[36] Stankevičius, E. et al. Fabrication of periodic micro-structures by holographic lithography. Lithuanian J. Phys. 53, 227–237 (2013). doi: 10.3952/physics.v53i4.2765
[37] Yang, L. et al. Projection two-photon polymerization using a spatial light modulator. Opt. Commun. 331, 82–86 (2014). doi: 10.1016/j.optcom.2014.05.051
[38] Zhang, C. C. et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels. Sci. Rep. 6, 33281 (2016). doi: 10.1038/srep33281
[39] Yang, D. et al. Rapid two-photon polymerization of an arbitrary 3D microstructure with 3D focal field engineering. Macromol. Rapid Commun. 40, 1900041 (2019). doi: 10.1002/marc.201900041
[40] Kim, D. & So, P. T. C. High-throughput three-dimensional lithographic microfabrication. Opt. Lett. 35, 1602–1604 (2010). doi: 10.1364/OL.35.001602
[41] Li, Y. C. et al. Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation. Opt. Express 20, 19030–19038 (2012). doi: 10.1364/OE.20.019030
[42] Mills, B. et al. Single-pulse multiphoton polymerization of complex structures using a digital multimirror device. Opt. Express 21, 14853–14858 (2013). doi: 10.1364/OE.21.014853
[43] Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019). doi: 10.1126/science.aax8760
[44] Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015). doi: 10.1126/science.aaa2397
[45] Walker, D. A., Hedrick, J. L. & Mirkin, C. A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366, 360–364 (2019). doi: 10.1126/science.aax1562
[46] Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020). doi: 10.1038/s41586-020-3029-7
[47] Bückmann, T. et al. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24, 2710–2714 (2012). doi: 10.1002/adma.201200584
[48] Chi, T. et al. Tailored thioxanthone-based photoinitiators for two-photon-controllable polymerization and nanolithographic printing. J. Polym. Sci. Part B Polym. Phys. 57, 1462–1475 (2019). doi: 10.1002/polb.24891
[49] Kiefer, P. et al. Sensitive photoresists for rapid multiphoton 3D laser micro- and nanoprinting. Adv. Optical Mater. 8, 2000895 (2020). doi: 10.1002/adom.202000895
[50] Arnoux, C. et al. Polymerization photoinitiators with near-resonance enhanced two-photon absorption cross-section: toward high-resolution photoresist with improved sensitivity. Macromolecules 53, 9264–9278 (2020). doi: 10.1021/acs.macromol.0c01518
[51] Chi, T. et al. Substituted thioxanthone-based photoinitiators for efficient two-photon direct laser writing polymerization with two-color resolution. ACS Appl. Polym. Mater. 3, 1426–1435 (2021). doi: 10.1021/acsapm.0c01291
[52] Oron, D., Tal, E. & Silberberg, Y. Scanningless depth-resolved microscopy. Opt. Express 13, 1468–1476 (2005). doi: 10.1364/OPEX.13.001468
[53] Sakellari, I. et al. Diffusion-assisted high-resolution direct femtosecond laser writing. ACS Nano 6, 2302–2311 (2012). doi: 10.1021/nn204454c
[54] Waller, E. H. & von Freymann, G. Spatio-temporal proximity characteristics in 3D μ-printing via multi-photon absorption. Polymers 8, 297 (2016). doi: 10.3390/polym8080297
[55] Maruo, S., Hasegawa, T. & Yoshimura, N. Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures. Opt. Express 17, 20945–20951 (2009). doi: 10.1364/OE.17.020945
[56] Ovsianikov, A. et al. Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials. Opt. Express 17, 2143–2148 (2009). doi: 10.1364/OE.17.002143
[57] Serbin, J. et al. Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics. Opt. Lett. 28, 301–303 (2003). doi: 10.1364/OL.28.000301
[58] Jonušauskas, L. et al. Mesoscale laser 3D printing. Opt. Express 27, 15205–15221 (2019). doi: 10.1364/OE.27.015205
[59] Hippler, M. et al. Controlling the shape of 3D microstructures by temperature and light. Nat. Commun. 10, 232 (2019). doi: 10.1038/s41467-018-08175-w