[1] Hiraide, S. et al. High-throughput gas separation by flexible metal–organic frameworks with fast gating and thermal management capabilities. Nat. Commun. 11, 3867 (2020). doi: 10.1038/s41467-020-17625-3
[2] Liu, W. et al. Mobile liquid gating membrane system for smart piston and valve applications. Ind. Eng. Chem. Res. 58, 11976–11984 (2019). doi: 10.1021/acs.iecr.9b01696
[3] Wang, T. Q. et al. Anisotropic Janus Si nanopillar arrays as a microfluidic one-way valve for gas-liquid separation. Nanoscale 6, 3846–3853 (2014). doi: 10.1039/C3NR05865D
[4] Triantafyllidou, S. et al. Understanding how brass ball valves passing certification testing can cause elevated lead in water when installed. Water Res. 46, 3240–3250 (2012). doi: 10.1016/j.watres.2012.03.022
[5] Bjerre, M. et al. Analysis of pressure safety valves for fire protection on offshore oil and gas installations. Process Saf. Environ. Prot. 105, 60–68 (2017). doi: 10.1016/j.psep.2016.10.008
[6] Mahmoodi, M. & Bandpy, M. G. An experimental study of the effective parameters on automatic line-break control valves action in natural gas pipelines. J. Nat. Gas. Sci. Eng. 52, 59–81 (2018). doi: 10.1016/j.jngse.2018.01.006
[7] Gao, L. L. et al. Research on a high-accuracy and high-pressure pneumatic servo valve with aerostatic bearing for precision control systems. Precis. Eng. 60, 355–367 (2019). doi: 10.1016/j.precisioneng.2019.09.005
[8] Saravanakumar, D., Mohan, B. & Muthuramalingam, T. A review on recent research trends in servo pneumatic positioning systems. Precis. Eng. 49, 481–492 (2017). doi: 10.1016/j.precisioneng.2017.01.014
[9] Hou, X. Liquid gating membrane. Natl Sci. Rev. 7, 9–11 (2020). doi: 10.1093/nsr/nwz197
[10] Gomollón-Bel, F. Ten chemical innovations that will change our world. Chem. Int. 42, 3–9 (2020). doi: 10.1515/ci-2020-0402
[11] Hou, X. et al. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature 519, 70–73 (2015). doi: 10.1038/nature14253
[12] Sheng, Z. Z. et al. Liquid-based porous membranes. Chem. Soc. Rev. 49, 7907–7928 (2020). doi: 10.1039/D0CS00347F
[13] Hou, X. Smart gating multi-scale pore/channel-based membranes. Adv. Mater. 28, 7049–7064 (2016). doi: 10.1002/adma.201600797
[14] Wang, C. Y. et al. Bioinspired liquid gating membrane-based catheter with anticoagulation and positionally drug release properties. Sci. Adv. 6, eabb4700 (2020). doi: 10.1126/sciadv.abb4700
[15] Sheng, Z. Z. et al. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport. Sci. Adv. 4, eaao6724 (2018). doi: 10.1126/sciadv.aao6724
[16] Hou, X. et al. Dynamic air/liquid pockets for guiding microscale flow. Nat. Commun. 9, 733 (2018). doi: 10.1038/s41467-018-03194-z
[17] Lv, W. et al. Highly stretchable and reliable graphene oxide-reinforced liquid gating membranes for tunable gas/liquid transport. Microsyst. Nanoeng. 6, 43 (2020). doi: 10.1038/s41378-020-0159-x
[18] Tesler, A. B. et al. Metallic liquid gating membranes. ACS Nano 14, 2465–2474 (2020). doi: 10.1021/acsnano.9b10063
[19] Fan, Y. et al. Visual chemical detection mechanism by a liquid gating system with dipol-induced interfacial molecular reconfiguration. Angew. Chem. Int. Ed. 58, 3967–3971 (2019). doi: 10.1002/anie.201814752
[20] Pantuso, E., de Filpo, G. & Nicoletta, F. P. Light-responsive polymer membranes. Adv. Opt. Mater. 7, 1900252 (2019). doi: 10.1002/adom.201900252
[21] Gelebart, A. H. et al. Photoresponsive fiber array: toward mimicking the collective motion of cilia for transport applications. Adv. Funct. Mater. 26, 5322–5327 (2016). doi: 10.1002/adfm.201601221
[22] Hu, L. et al. Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS Nano 9, 4835–4842 (2015). doi: 10.1021/nn5062854
[23] Wu, S. W. et al. Superhydrophobic photothermal icephobic surfaces based on candle soot. Proc. Natl Acad. Sci. USA 117, 11240–11246 (2020). doi: 10.1073/pnas.2001972117
[24] Gao, C. L. et al. Droplets manipulated on photothermal organogel Surfaces. Adv. Funct. Mater. 28, 1803072 (2018). doi: 10.1002/adfm.201803072
[25] Beharry, A. A. & Woolley, G. A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 40, 4422–4437 (2011). doi: 10.1039/c1cs15023e
[26] Helmy, S. et al. Photoswitching using visible light: a new class of organic photochromic molecules. J. Am. Chem. Soc. 136, 8169–8172 (2014). doi: 10.1021/ja503016b
[27] Brode, W. R. et al. The relation between the absorption spectra and the chemical constitution of dyes. XXV. Phototropism and cis-trans isomerism in aromatic azo compounds. J. Am. Chem. Soc. 74, 4641–4646 (1952). doi: 10.1021/ja01138a059
[28] Masutani, K., Morikawa, M. A. & Kimizuka, N. A liquid azobenzene derivative as a solvent-free solar thermal fuel. Chem. Commun. 50, 15803–15806 (2014). doi: 10.1039/C4CC07713J
[29] Wong, T. S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011). doi: 10.1038/nature10447
[30] Kaelble, D. H. Dispersion-polar surface tension properties of organic solids. J. Adhes. 2, 66–81 (1970). doi: 10.1080/0021846708544582
[31] Owens, D. K. & Wendt, R. C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741–1747 (1969). doi: 10.1002/app.1969.070130815
[32] Rabel, W. Einige aspekte der benetzungstheorie und ihre anwendung auf die untersuchung und veränderung der oberflächeneigenschaften von polymeren. Farbe und Lack. 77, 997–1005 (1971).
[33] Chen, J. C., Kuo, C. W. & Neitzel, G. P. Numerical simulation of thermocapillary nonwetting. Int. J. Heat. Mass Transf. 49, 4567–4576 (2006). doi: 10.1016/j.ijheatmasstransfer.2006.04.033
[34] Pistorius, P. C. & Burstein, G. T. Metastable pitting corrosion of stainless steel and the transition to stability. Philos. Trans. R. Soc. A 341, 531–559 (1992).
[35] Schmuki, P. et al. The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion. Corros. Sci. 47, 1239–1250 (2005). doi: 10.1016/j.corsci.2004.05.023
[36] Waldeck, D. H. Photoisomerization dynamics of stilbenes. Chem. Rev. 91, 415–436 (1991). doi: 10.1021/cr00003a007