[1] Binnig, G. et al. Tunneling through a controllable vacuum gap. Applied Physics Letters 40, 178-180 (1982). doi: 10.1063/1.92999
[2] Binnig, G. & Rohrer, H. Scanning tunneling microscopy. Surface Science 126, 236-244 (1983). doi: 10.1016/0039-6028(83)90716-1
[3] Giessibl, F. J. Atomic resolution of the silicon (111)-(7×7) surface by atomic force microscopy. Science 267, 68-71 (1995). doi: 10.1126/science.267.5194.68
[4] Gross, L. et al. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110-1114 (2009). doi: 10.1126/science.1176210
[5] Ladenthin, J. N. et al. Force-induced tautomerization in a single molecule. Nature Chemistry 8, 935-940 (2016). doi: 10.1038/nchem.2552
[6] Stroscio, J. A. & Eigler, D. M. Atomic and molecular manipulation with the scanning tunneling microscope. Science 254, 1319-1326 (1991). doi: 10.1126/science.254.5036.1319
[7] Ternes, M. et al. The force needed to move an atom on a surface. Science 319, 1066-1069 (2008). doi: 10.1126/science.1150288
[8] Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732-1735 (1998). doi: 10.1126/science.280.5370.1732
[9] Lauhon, L. J. & Ho, W. Single-molecule vibrational spectroscopy and microscopy: CO on Cu(001) and Cu(110). Physical Review B 60, R8525-R8528 (1999). doi: 10.1103/PhysRevB.60.R8525
[10] Vitali, L. et al. Surveying molecular vibrations during the formation of metal−molecule nanocontacts. Nano Letters 10, 657-660 (2010). doi: 10.1021/nl903760k
[11] Okabayashi, N. et al. Vibrations of a molecule in an external force field. Proceedings of the National Academy of Sciences of the United States of America 115, 4571-4576 (2018). doi: 10.1073/pnas.1721498115
[12] Han, Z. M. et al. Probing intermolecular coupled vibrations between two molecules. Physical Review Letters 118, 036801 (2017). doi: 10.1103/PhysRevLett.118.036801
[13] Pozzi, E. A. et al. Ultrahigh-vacuum tip-enhanced Raman spectroscopy. Chemical Reviews 117, 4961-4982 (2017). doi: 10.1021/acs.chemrev.6b00343
[14] Shi, X. et al. Advances in tip-enhanced near-field Raman microscopy using nanoantennas. Chemical Reviews 117, 4945-4960 (2017). doi: 10.1021/acs.chemrev.6b00640
[15] Richard-Lacroix, M. et al. Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception. Chemical Society Reviews 46, 3922-3944 (2017). doi: 10.1039/C7CS00203C
[16] Mahapatra, S. et al. Tip-enhanced Raman spectroscopy: chemical analysis with nanoscale to angstrom scale resolution. The Journal of Chemical Physics 153, 010902 (2020). doi: 10.1063/5.0009766
[17] Pettinger, B. et al. Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. Annual Review of Physical Chemistry 63, 379-399 (2012). doi: 10.1146/annurev-physchem-032511-143807
[18] Deckert-Gaudig, T. et al. Tip-enhanced Raman spectroscopy–from early developments to recent advances. Chemical Society Reviews 46, 4077-4110 (2017). doi: 10.1039/C7CS00209B
[19] Wang, X. et al. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chemical Society Reviews 46, 4020-4041 (2017). doi: 10.1039/C7CS00206H
[20] Zhang, D. & Meixner, A. J. Scanning near-field gap-mode microscopy. in Handbook of Spectroscopy 2nd edn. (eds Gauglitz, G. & Moore, D. S.) (Hoboken: Wiley, 2014), 911-940.
[21] Zhong, J. H. et al. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nature Nanotechnology 12, 132-136 (2017). doi: 10.1038/nnano.2016.241
[22] Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82-86 (2013). doi: 10.1038/nature12151
[23] Jaculbia, R. B. et al. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nature Nanotechnology 15, 105-110 (2020). doi: 10.1038/s41565-019-0614-8
[24] Zhang, Y. et al. Visually constructing the chemical structure of a single molecule by scanning Raman picoscopy. National Science Review 6, 1169-1175 (2019). doi: 10.1093/nsr/nwz180
[25] Lee, J. et al. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78-82 (2019). doi: 10.1038/s41586-019-1059-9
[26] Chiang, N. et al. Conformational contrast of surface-mediated molecular switches yields Ångstrom-scale spatial resolution in ultrahigh vacuum tip-enhanced Raman spectroscopy. Nano Letters 16, 7774-7778 (2016). doi: 10.1021/acs.nanolett.6b03958
[27] Schultz, J. F. et al. Defining multiple configurations of rubrene on a Ag(100) Surface with 5 Å spatial resolution via ultrahigh vacuum tip-enhanced Raman spectroscopy. The Journal of Physical Chemistry C 124, 2420-2426 (2020). doi: 10.1021/acs.jpcc.9b09162
[28] Wang, R. P. et al. Raman detection of bond breaking and making of a chemisorbed up-standing single molecule at single-bond level. The Journal of Physical Chemistry Letters 12, 1961-1968 (2021). doi: 10.1021/acs.jpclett.1c00074
[29] Xu, J. Y. et al. Determining structural and chemical heterogeneities of surface species at the single-bond limit. Science 371, 818-822 (2021). doi: 10.1126/science.abd1827
[30] Li, L. F. et al. Chemically identifying single adatoms with single-bond sensitivity during oxidation reactions of borophene. Nature Communications 13, 1796 (2022). doi: 10.1038/s41467-022-29445-8
[31] Lee, J. et al. Microscopy with a single-molecule scanning electrometer. Science Advances 4, eaat5472 (2018). doi: 10.1126/sciadv.aat5472
[32] Gieseking, R. L. M. et al. Bias-dependent chemical enhancement and nonclassical Stark effect in tip-enhanced Raman spectromicroscopy of CO-terminated Ag tips. The Journal of Physical Chemistry Letters 9, 3074-3080 (2018). doi: 10.1021/acs.jpclett.8b01343
[33] Backus, E. H. G. et al. Real-time observation of molecular motion on a surface. Science 310, 1790-1793 (2005). doi: 10.1126/science.1120693
[34] Zhang, X. B. et al. Fast fabrication and judgement of TERS-active tips. Chinese Journal of Chemical Physics 35, 713-719 (2022). doi: 10.1063/1674-0068/cjcp2205094
[35] Barbry, M. et al. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. Nano Letters 15, 3410-3419 (2015). doi: 10.1021/acs.nanolett.5b00759
[36] Baumberg, J. J. et al. Extreme nanophotonics from ultrathin metallic gaps. Nature Materials 18, 668-678 (2019). doi: 10.1038/s41563-019-0290-y
[37] Braun, K. et al. Probing bias-induced electron density shifts in metal–molecule interfaces via tip-enhanced Raman scattering. Journal of the American Chemical Society 143, 1816-1821 (2021). doi: 10.1021/jacs.0c09392
[38] He, H. Y. et al. Stark effect and nonlinear impedance of the asymmetric Ag-CO-Ag junction: an optical rectenna. The Journal of Physical Chemistry C 120, 20914-20921 (2016). doi: 10.1021/acs.jpcc.6b02664
[39] Lambert, D. K. Vibrational Stark effect of CO on Ni(100), and CO in the aqueous double layer: Experiment, theory, and models. The Journal of Chemical Physics 89, 3847-3860 (1988). doi: 10.1063/1.454860
[40] Chattopadhyay, A. & Boxer, S. G. Vibrational stark effect spectroscopy. Journal of the American Chemical Society 117, 1449-1450 (1995). doi: 10.1021/ja00109a038
[41] Schwarz, A. et al. Detecting the dipole moment of a single carbon monoxide molecule. Applied Physics Letters 105, 011606 (2014). doi: 10.1063/1.4890324
[42] Batsanov, S. S. Van der Waals radii of elements. Inorganic Materials 37, 871-885 (2001). doi: 10.1023/A:1011625728803
[43] Wei, Z. Y., Göltl, F. & Sautet, P. Diffusion barriers for carbon monoxide on the Cu(001) surface using many-body perturbation theory and various density functionals. Journal of Chemical Theory and Computation 17, 7862-7872 (2021). doi: 10.1021/acs.jctc.1c00946
[44] Alexandrowicz, G. et al. Observation of microscopic CO dynamics on Cu(001) using 3He spin-echo spectroscopy. Physical Review Letters 93, 156103 (2004). doi: 10.1103/PhysRevLett.93.156103