[1] |
Bloch, F. Über die quantenmechanik der elektronen in kristallgittern. Z. für. Phys. 52, 555-600 (1929). doi: 10.1007/BF01339455 |
[2] |
Zener, C. A theory of the electrical breakdown of solid dielectrics. Proc. Royal Soc. A 145, 523-529 (1934). |
[3] |
Lenz, G., Talanina, I. & De Sterke, C. M. Bloch oscillations in an array of curved optical waveguides. Phys. Rev. Lett. 83, 963-966 (1999). doi: 10.1103/PhysRevLett.83.963 |
[4] |
Dreisow, F. et al. Bloch-Zener oscillations in binary superlattices. Phys. Rev. Lett. 102, 076802 (2009). doi: 10.1103/PhysRevLett.102.076802 |
[5] |
Corrielli, G. et al. Fractional Bloch oscillations in photonic lattices. Nat. Commun. 4, 1555 (2013). doi: 10.1038/ncomms2578 |
[6] |
Sanchis-Alepuz, H., Kosevich, Y. A. & Sánchez-Dehesa, J. Acoustic analogue of electronic bloch oscillations and resonant zener tunneling in ultrasonic superlattices. Phys. Rev. Lett. 98, 134301 (2007). doi: 10.1103/PhysRevLett.98.134301 |
[7] |
Lanzillotti-Kimura, N. D. et al. Bloch oscillations of THz acoustic phonons in coupled nanocavity structures. Phys. Rev. Lett. 104, 197402 (2010). doi: 10.1103/PhysRevLett.104.197402 |
[8] |
Dahan, M. B. et al. Bloch oscillations of atoms in an optical potential. Phys. Rev. Lett. 76, 4508-4511 (1996). doi: 10.1103/PhysRevLett.76.4508 |
[9] |
Geiger, Z. A. et al. Observation and uses of position-space bloch oscillations in an ultracold gas. Phys. Rev. Lett. 120, 213201 (2018). doi: 10.1103/PhysRevLett.120.213201 |
[10] |
Eisenberg, H. S. et al. Diffraction management. Phys. Rev. Lett. 85, 1863-1866 (2000). doi: 10.1103/PhysRevLett.85.1863 |
[11] |
Christodoulides, D. N., Lederer, F. & Silberberg, Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817-823 (2003). doi: 10.1038/nature01936 |
[12] |
Peschel, U., Pertsch, T. & Lederer, F. Optical Bloch oscillations in waveguide arrays. Opt. Lett. 23, 1701-1703 (1998). doi: 10.1364/OL.23.001701 |
[13] |
Pertsch, T. et al. Optical bloch oscillations in temperature tuned waveguide arrays. Phys. Rev. Lett. 83, 4752-4755 (1999). doi: 10.1103/PhysRevLett.83.4752 |
[14] |
Morandotti, R. et al. Experimental observation of linear and nonlinear optical bloch oscillations. Phys. Rev. Lett. 83, 4756-4759 (1999). doi: 10.1103/PhysRevLett.83.4756 |
[15] |
Regensburger, A. et al. Photon propagation in a discrete fiber network: an interplay of coherence and losses. Phys. Rev. Lett. 107, 233902 (2011). doi: 10.1103/PhysRevLett.107.233902 |
[16] |
Bersch, C., Onishchukov, G. & Peschel, U. Spectral and temporal Bloch oscillations in optical fibres. Appl. Phys. B 104, 495-501 (2011). doi: 10.1007/s00340-011-4627-8 |
[17] |
Bell, B. A. et al. Spectral photonic lattices with complex long-range coupling. Optica 4, 1433-1436 (2017). doi: 10.1364/OPTICA.4.001433 |
[18] |
Qin, C. Z. et al. Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials. Phys. Rev. Lett. 120, 133901 (2018). doi: 10.1103/PhysRevLett.120.133901 |
[19] |
Yuan, L. Q. et al. Synthetic dimension in photonics. Optica 5, 1396-1405 (2018). doi: 10.1364/OPTICA.5.001396 |
[20] |
Floß, J. et al. Observation of bloch oscillations in molecular rotation. Phys. Rev. Lett. 115, 203002 (2015). doi: 10.1103/PhysRevLett.115.203002 |
[21] |
Luo, X. W. et al. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light. Nat. Commun. 8, 16097 (2017). doi: 10.1038/ncomms16097 |
[22] |
Qin, C. Z. et al. Effective electric-field force for a photon in a synthetic frequency lattice created in a waveguide modulator. Phys. Rev. A 97, 063838 (2018). doi: 10.1103/PhysRevA.97.063838 |
[23] |
Bersch, C., Onishchukov, G. & Peschel, U. Experimental observation of spectral Bloch oscillations. Opt. Lett. 34, 2372-2374 (2009). doi: 10.1364/OL.34.002372 |
[24] |
Yuan, L. Q. & Fan, S. H. Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator. Optica 3, 1014-1018 (2016). doi: 10.1364/OPTICA.3.001014 |
[25] |
Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821-829 (2014). doi: 10.1038/nphoton.2014.248 |
[26] |
Lin, Y. J. et al. A synthetic electric force acting on neutral atoms. Nat. Phys. 7, 531-534 (2011). doi: 10.1038/nphys1954 |
[27] |
Celi, A. et al. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014). doi: 10.1103/PhysRevLett.112.043001 |
[28] |
Goda, K. et al. Theory of amplified dispersive fourier transformation. Phys. Rev. A 80, 043821 (2009). doi: 10.1103/PhysRevA.80.043821 |
[29] |
Goda, K. & Jalali, B. Dispersive fourier transformation for fast continuous single-shot measurements. Nat. Photonics 7, 102-112 (2013). doi: 10.1038/nphoton.2012.359 |
[30] |
Mahjoubfar, A. et al. Time stretch and its applications. Nat. Photonics 11, 341-351 (2017). doi: 10.1038/nphoton.2017.76 |
[31] |
Liu, X. M., Yao, X. K. & Cui, Y. D. Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett. 121, 023905 (2018). doi: 10.1103/PhysRevLett.121.023905 |
[32] |
Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555-559 (2011). doi: 10.1126/science.1193968 |
[33] |
Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373-377 (2019). doi: 10.1038/s41586-019-1008-7 |
[34] |
Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nat. Photonics 6, 440-449 (2012). doi: 10.1038/nphoton.2012.142 |
[35] |
Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 9, 57-79 (2003). doi: 10.1016/S1068-5200(02)00527-8 |
[36] |
Peled, Y., Motil, A. & Tur, M. Fast Brillouin optical time domain analysis for dynamic sensing. Opt. Express 20, 8584-8591 (2012). doi: 10.1364/OE.20.008584 |
[37] |
Schliesser, A. et al. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029-9038 (2005). doi: 10.1364/OPEX.13.009029 |
[38] |
Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photonics 11, 774-783 (2017). doi: 10.1038/s41566-017-0051-x |
[39] |
Fang, K. J., Yu, Z. F. & Fan, S. H. Photonic aharonov-bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012). doi: 10.1103/PhysRevLett.108.153901 |
[40] |
Fang, K. J. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465-471 (2017). doi: 10.1038/nphys4009 |
[41] |
Lin, Q. & Fan, S. H. Light guiding by effective gauge field for photons. Phys. Rev. X 4, 031031 (2014). doi: 10.1103/PhysRevX.4.031031 |
[42] |
Dutt, A. et al. Experimental band structure spectroscopy along a synthetic dimension. Nat. Commun. 10, 3122 (2019). doi: 10.1038/s41467-019-11117-9 |
[43] |
Agrawal, G. P. Nonlinear Fiber Optics 4th edn (Academic Press, 2007). |
[44] |
Bersch, C., Onishchukov, G. & Peschel, U. Optical gap solitons and truncated nonlinear Bloch waves in temporal lattices. Phys. Rev. Lett. 109, 093903 (2012). doi: 10.1103/PhysRevLett.109.093903 |
[45] |
Haller, E. et al. Inducing transport in a dissipation-free lattice with super Bloch oscillations. Phys. Rev. Lett. 104, 200403 (2010). doi: 10.1103/PhysRevLett.104.200403 |
[46] |
Longhi, S. et al. Observation of dynamic localization in periodically curved waveguide arrays. Phys. Rev. Lett. 96, 243901 (2006). doi: 10.1103/PhysRevLett.96.243901 |
[47] |
Szameit, A. et al. Polychromatic dynamic localization in curved photonic lattices. Nat. Phys. 5, 271-275 (2009). doi: 10.1038/nphys1221 |
[48] |
Wang, K. et al. Multidimensional synthetic chiral-tube lattices via nonlinear frequency conversion. Light Sci. Appl. 9, 132 (2020). doi: 10.1038/s41377-020-0299-7 |
[49] |
Hu, Y. W. et al. Realization of high-dimensional frequency crystals in electro-optic microcombs. Optica 7, 1189-1194 (2020). doi: 10.1364/OPTICA.395114 |
[50] |
Li, Q., Davanço, M. & Srinivasan, K. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photonics 10, 406-414 (2016). doi: 10.1038/nphoton.2016.64 |
[51] |
Zaske, S. et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012). doi: 10.1103/PhysRevLett.109.147404 |
[52] |
Wimmer, M. et al. Observation of optical solitons in PT-symmetric lattices. Nat. Commun. 6, 7782 (2015). doi: 10.1038/ncomms8782 |
[53] |
Regensburger, A. et al. Parity-time synthetic photonic lattices. Nature 488, 167-171 (2012). doi: 10.1038/nature11298 |
[54] |
Weidemann, S. et al. Topological funneling of light. Science 368, 311-314 (2020). doi: 10.1126/science.aaz8727 |