[1] Lin, V. et al. Design and fabrication of long-focal-length microlens arrays for shack-Hartmann wavefront sensors. Micro & Nano Letters 6, 523-526 (2011).
[2] Zhang, L. et al. Fabrication of an infrared shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes. Applied Optics 57, 3598-3605 (2018). doi: 10.1364/AO.57.003598
[3] Zhou, X. T. et al. Fabrication of large-Scale microlens arrays based on screen printing for integral imaging 3D display. ACS Applied Materials & Interfaces 8, 24248-24255 (2016).
[4] Hong, J. et al. 3D/2D convertible projection-type integral imaging using concave half mirror array. Optics Express 18, 20628-20637 (2010). doi: 10.1364/OE.18.020628
[5] Zimmermann, M. et al. Microlens laser beam homogenizer: from theory to application. Proceedings of SPIE 6663, Laser Beam Shaping VIII. San Diego, California, United States: SPIE, 2007, 666302.
[6] Jin, Y. H., Hassan, A. & Jiang, Y. J. Freeform microlens array homogenizer for excimer laser beam shaping. Optics Express 24, 24846-24858 (2016). doi: 10.1364/OE.24.024846
[7] Chen, J. W. et al. Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces. Precision Engineering 44, 70-74 (2016). doi: 10.1016/j.precisioneng.2015.10.003
[8] Li, Z. W. & Xiao, J. L. Mechanics and optics of stretchable elastomeric microlens array for artificial compound eye camera. Journal of Applied Physics 117, 014904 (2015). doi: 10.1063/1.4905299
[9] Li, L. et al. Metalens-array–based high-dimensional and multiphoton quantum source. Science 368, 1487-1490 (2020). doi: 10.1126/science.aba9779
[10] Yang, C. et al. Terahertz planar lenses based on plasmonic metasurfaces. Physics Letters A 383, 789-792 (2019). doi: 10.1016/j.physleta.2018.11.039
[11] Feng, X. et al. Integrated energy storage system based on triboelectric nanogenerator in electronic devices. Frontiers of Chemical Science and Engineering 15, 238-250 (2021). doi: 10.1007/s11705-020-1956-3
[12] Zeng, Z. H. et al. Nanocellulose-assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat. http://dx. doi.org/10.1002/smm2.1118 (2022). doi: 10.1002/smm2.1118(2022
[13] Yu, H. Y. et al. Three-dimensional direct laser writing of PEGda hydrogel microstructures with low threshold power using a green laser beam. Light:Advanced Manufacturing 2, 31-38 (2021). doi: 10.37188/lam.2021.003
[14] Geng, Y. et al. Optical and electrical modulation in ultraviolet photodetectors based on organic one-dimensional photochromic arrays. SmartMat 2, 388-397 (2021). doi: 10.1002/smm2.1056
[15] Zhang, B. et al. Self-organized phase-transition lithography for all-inorganic photonic textures. Light:Science & Applications 10, 93 (2021).
[16] Chou, M. C. et al. A novel method to fabricate gapless hexagonal micro-lens array. Sensors and Actuators A:Physical 118, 298-306 (2005). doi: 10.1016/j.sna.2004.08.015
[17] Okamoto, T. et al. Ultraviolet-cured polymer microlens arrays. Applied Optics 38, 2991-2996 (1999). doi: 10.1364/AO.38.002991
[18] Jung, H. & Jeong, K. H. Monolithic polymer microlens arrays with high numerical aperture and high packing density. ACS Applied Materials & Interfaces 7, 2160-2165 (2015).
[19] Kim, J. Y. et al. Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique. Journal of Materials Chemistry 22, 3053-3058 (2012). doi: 10.1039/c2jm15576a
[20] Florian, C. et al. Direct laser printing of tailored polymeric microlenses. ACS Applied Materials & Interfaces 8, 17028-17032 (2016).
[21] Blattmann, M. et al. Jet printing of convex and concave polymer micro-lenses. Optics Express 23, 24525-24536 (2015). doi: 10.1364/OE.23.024525
[22] Li, Z. B. et al. A polyvinyl alcohol microlens array with controlled curvature on discontinuous hydrophobic surface. Journal of Molecular Liquids 319, 114372 (2020). doi: 10.1016/j.molliq.2020.114372
[23] Ye, X. Z. et al. Brittlestar-Inspired microlens arrays made of calcite single crystals. Small 11, 1677-1682 (2015). doi: 10.1002/smll.201402765
[24] Xia, J. et al. Self assembly polymer microlens array for integral imaging. Displays 31, 186-190 (2010). doi: 10.1016/j.displa.2010.07.002
[25] Sun, C. et al. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors and Actuators A:Physical 121, 113-120 (2005). doi: 10.1016/j.sna.2004.12.011
[26] Guo, R. et al. Micro lens fabrication by means of femtosecond two photon photopolymerization. Optics Express 14, 810-816 (2006). doi: 10.1364/OPEX.14.000810
[27] Wu, D. et al. 100% Fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision. IEEE Photonics Technology Letters 21, 1535-1537 (2009). doi: 10.1109/LPT.2009.2029346
[28] Khazi, I., Muthiah, U. & Mescheder, U. 3D free forms in c-Si via grayscale lithography and RIE. Microelectronic Engineering 193, 34-40 (2018). doi: 10.1016/j.mee.2018.02.006
[29] Li, W. B. et al. Crack engineering for the construction of arbitrary hierarchical architectures. Proceedings of the National Academy of Sciences of the United States of America 116, 23909-23914 (2019). doi: 10.1073/pnas.1915332116
[30] Chen, X. F. et al. High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness. Advanced Materials 30, 1705683 (2018). doi: 10.1002/adma.201705683
[31] Gao, Y. Q. et al. Research on dynamical-gradual greyscale digital mask lithography. Journal of Modern Optics 58, 573-579 (2011). doi: 10.1080/09500340.2011.553293
[32] Poonawala, A. & Milanfar, P. Mask design for optical microlithography—an inverse imaging problem. IEEE Transactions on Image Processing 16, 774-788 (2007). doi: 10.1109/TIP.2006.891332
[33] Granik, Y. , Sakajiri, K. & Shang, S. On objectives and algorithms of inverse methods in microlithography. Proceedings of SPIE 6349, Photomask Technology 2006. Monterey, California, United States: SPIE, 2006, 63494R.
[34] Ma, X. & Arce, G. R. Generalized inverse lithography methods for phase-shifting mask design. Optics Express 15, 15066-15079 (2007). doi: 10.1364/OE.15.015066
[35] Shen, Y. J., Wong, N. & Lam, E. Y. Level-set-based inverse lithography for photomask synthesis. Optics Express 17, 23690-23701 (2009). doi: 10.1364/OE.17.023690
[36] Jia, N. N. , Wong, A. K. & Lam, E. Y. Regularization of inverse photomask synthesis to enhance manufacturability. Proceedings of SPIE 7520, Lithography Asia 2009. Taipei, China: SPIE, 2009, 75200E.
[37] Ghalehbeygi, O. T. et al. Iterative deconvolution for exposure planning in scanning laser lithography. 2018 Annual American Control Conference (ACC). Milwaukee, WI, USA: IEEE, 2018, 6684-6689.
[38] Fleming, A. J. et al. Scanning laser lithography with constrained quadratic exposure optimization. IEEE Transactions on Control Systems Technology 27, 2221-2228 (2019). doi: 10.1109/TCST.2018.2836910
[39] Fleming, A. J., Wills, A. G. & Routley, B. S. Exposure optimization in scanning laser lithography. IEEE Potentials 35, 33-39 (2016). doi: 10.1109/MPOT.2016.2540039
[40] Thiele, S. et al. 3D-printed eagle eye: compound microlens system for foveated imaging. Science Advances 3, e1602655 (2017). doi: 10.1126/sciadv.1602655
[41] Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics 10, 554-560 (2016). doi: 10.1038/nphoton.2016.121
[42] Ristok, S. et al. Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components. Optical Materials Express 10, 2370-2378 (2020). doi: 10.1364/OME.401724
[43] Yong, J. L. et al. Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser. ACS Applied Materials & Interfaces 5, 9382-9385 (2013).
[44] Delgado, T., Nieto, D. & Flores-Arias, M. T. Fabrication of microlens arrays on soda-lime glass using a laser direct-write technique and a thermal treatment assisted by a CO2 laser. Optics and Lasers in Engineering 73, 1-6 (2015).
[45] Deng, C., Kim, H. & Ki, H. Fabrication of a compound infrared microlens array with ultrashort focal length using femtosecond laser-assisted wet etching and dual-beam pulsed laser deposition. Optics Express 27, 28679-28691 (2019). doi: 10.1364/OE.27.028679
[46] Zhu, X. F. et al. Supercritical lens array in a centimeter scale patterned with maskless UV lithography. Optics Letters 45, 1798-1801 (2020). doi: 10.1364/OL.389702
[47] Liu, F. et al. Low-cost high integration IR polymer microlens array. Optics Letters 44, 1600-1602 (2019). doi: 10.1364/OL.44.001600
[48] Schmid, M. et al. Three-dimensional direct laser written achromatic axicons and multi-component microlenses. Optics Letters 43, 5837-5840 (2018). doi: 10.1364/OL.43.005837
[49] Yuan, C. et al. Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing. ACS Applied Materials & Interfaces 11, 40662-40668 (2019).
[50] Huang, Y. et al. High fill factor microlens array fabrication using direct laser writing and its application in wavefront detection. Optics Letters 45, 4460-4463 (2020). doi: 10.1364/OL.398616
[51] Cao, A. X. et al. Center off-axis tandem microlens arrays for beam homogenization. IEEE Photonics Journal 7, 2400207 (2015).
[52] Javidi, B., Moon, I. & Yeom, S. Three-dimensional identification of biological microorganism using integral imaging. Optics Express 14, 12096-12108 (2006). doi: 10.1364/OE.14.012096
[53] Lv, G. J. et al. Autostereoscopic 3D display with high brightness and low crosstalk. Applied Optics 56, 2792-2795 (2017). doi: 10.1364/AO.56.002792
[54] Kihara, K. et al. New three-dimensional head-mounted display system, TMDU-S-3D system, for minimally invasive surgery application: procedures for gasless single-port radical nephrectomy. International Journal of Urology 19, 886-889 (2012). doi: 10.1111/j.1442-2042.2012.03044.x
[55] Yu, X. B. et al. Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch. Chinese Optics Letters 12, 060008 (2014). doi: 10.3788/COL201412.060008
[56] Geng, J. et al. Three-dimensional display technologies. Advances in Optics and Photonics 5, 456-535 (2013). doi: 10.1364/AOP.5.000456
[57] Steenhusen, S. et al. Heterogeneous microoptical structures with sub-micrometer precision. Thin Solid Films 668, 74-80 (2018). doi: 10.1016/j.tsf.2018.09.013
[58] Hu, Y. L. et al. High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization. Applied Physics Letters 103, 141112 (2013). doi: 10.1063/1.4824307
[59] Dinh, D. H. , Chien, H. L. & Lee, Y. C. Maskless lithography based on digital micro-mirror device (DMD) with double sided microlens and spatial filter array. 2nd International Conference on Applied Mechanics, Electronics and Mechatronics Engineering. Beijing, China: DEStech Publications, Inc. , 2017, 423-428.
[60] Huang, S. Z. et al. Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow. Optics & Laser Technology 100, 298-303 (2018).