[1] Kuschmierz, R. et al. Ultra-thin 3D lensless fiber endoscopy using diffractive optical elements and deep neural networks. Light: Advanced Manufacturing 2, 30 (2021).
[2] Situ, G. H. Deep holography. Light: Advanced Manufacturing 3, 8 (2022).
[3] Cao, W. M., L iu, Q. F. & He, Z. Q. Review of pavement defect detection methods. IEEE Access 8, 14531-14544 (2020). doi: 10.1109/ACCESS.2020.2966881
[4] Cao, M. T. et al. Survey on performance of deep learning models for detecting road damages using multiple dashcam image resources. Advanced Engineering Informatics 46, 101182 (2020). doi: 10.1016/j.aei.2020.101182
[5] Zhu, J. Q. et al. Pavement distress detection using convolutional neural networks with images captured via UAV. Automation in Construction 133, 103991 (2022). doi: 10.1016/j.autcon.2021.103991
[6] Zhang, C. B., Chang, C. C. & Jamshidi, M. Concrete bridge surface damage detection using a single-stage detector. Computer-Aided Civil and Infrastructure Engineering 35, 389-409 (2020). doi: 10.1111/mice.12500
[7] Du, F. J., Jiao, S. J. & Chu, K. L. Application research of bridge damage detection based on the improved lightweight convolutional neural network model. Applied Sciences 12, 6225 (2022). doi: 10.3390/app12126225
[8] Liu, C. Y. et al. Insulator faults detection in aerial images from high-voltage transmission lines based on deep learning model. Applied Sciences 11, 4647 (2021). doi: 10.3390/app11104647
[9] Liu, J. J. et al. An improved method based on deep learning for insulator fault detection in diverse aerial images. Energies 14, 4365 (2021). doi: 10.3390/en14144365
[10] Redmon, J. & Farhadi, A. YOLOV3: an incremental improvement. Preprint at https://doi.org/10.48550/arXiv.1804.02767 (2018).
[11] Vlaminck, M. et al. Region-based CNN for anomaly detection in PV power plants using aerial imagery. Sensors 22, 1244 (2022). doi: 10.3390/s22031244
[12] Di Tommaso, A. et al. A multi-stage model based on YOLOv3 for defect detection in PV panels based on IR and visible imaging by unmanned aerial vehicle. Renewable Energy 193, 941-962 (2022). doi: 10.1016/j.renene.2022.04.046
[13] Sandler, M. et al. MobileNetV2: inverted residuals and linear bottlenecks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018, 4510-4520.
[14] He, K. M. et al. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016, 770-778.
[15] Lin, T. Y. et al. Feature pyramid networks for object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017, 2117-2125.
[16] Bell, S. et al. Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016, 2874-2883.
[17] Chen, L. C. et al. Encoder-decoder with atrous separable convolution for semantic image segmentation. Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer, 2018, 833-851.
[18] Vaswani, A. et al. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, CA, USA: Curran Associates Inc., 2017, 6000-6010.
[19] Wang, X. L. et al. Non-local neural networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018, 7794-7803.
[20] Zhu, P. F. et al. Vision meets drones: a challenge. Preprint at https://doi.org/10.48550/arXiv.1804.07437 (2018).
[21] Lin, T. Y. et al. Microsoft COCO: common objects in context. Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014, 740-755.
[22] Pang, J. M. et al. Libra R-CNN: towards balanced learning for object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019, 821-830.
[23] Ge, Z. et al. YOLOX: exceeding YOLO series in 2021. Preprint at https://doi.org/10.48550/arXiv.2107.08430 (2021).
[24] Jocher, G. ultralytics/yolov5: v3.1 – Bug Fixes and Performance Improvements. (2020). At https://github.com/ultralytics/yolov5 URL.
[25] Wang, C. Y., Bochkovskiy, A. & Liao, H. Y. M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. Preprint at https://doi.org/10.48550/arXiv.2207.02696 (2022).
[26] Feng, C. J. et al. TOOD: task-aligned one-stage object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, QC, Canada: IEEE, 2021, 3490-3499.
[27] Ren, S. Q. et al. Faster R-CNN: towards real-time object detection with region proposal networks. Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Quebec, Canada: MIT Press, 2015, 91-99.
[28] Wang, J. Q. et al. CARAFE: content-aware reassembly of features. Proceedings of the IEEE/CVFInternational Conference on Computer Vision. Seoul, Korea (South): IEEE, 2019, 3007-3016.
[29] Lu, X. et al. Grid R-CNN. Proceedings of the IEEE/CVF Conference on Computer Vision andPattern Recognition. Long Beach, CA, USA: IEEE, 2019, 7355-7364.
[30] Huang, Y. C., Chen, J. X. & Huang, D. UFPMP-Det: toward accurate and efficient object detection on drone imagery. Preprint at https://doi.org/10.48550/arXiv.2112.10415 (2021).
[31] Yang, F. et al. Clustered object detection in aerial images. Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE, 2019, 8311-8320.
[32] Li, C. L. et al. Density map guided object detection in aerial images. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, WA, USA: IEEE, 2020, 190-191.
[33] Deng, S. T. et al. A global-local self-adaptive network for drone-view object detection. IEEE Transactions on Image Processing 30, 1556-1569 (2020).
[34] Wei, Z. W. et al. AMRNet: chips augmentation in aerial images object detection. Preprint at https://doi.org/10.48550/arXiv.2009.07168 (2020).
[35] Rossi, L., Karimi, A. & Prati, A. A novel region of interest extraction layer for instance segmentation. Proceedings of the 25th International Conference on Pattern Recognition. Milan, Italy: IEEE, 2021, 2203-2209.
[36] Chen, Q. et al. You only look one-level feature. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, USA: IEEE, 2021, 13039-13048.
[37] Chen, K. et al. MMDetection: open MMLab detection toolbox and benchmark. Preprint at https://doi.org/10.48550/arXiv.1906.07155 (2019).
[38] Wang, J. Q. et al. Side-aware boundary localization for more precise object detection. Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer, 2020, 403-419.
[39] Lin, T. Y. et al. Focal loss for dense object detection. Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017, 2980-2988.
[40] Xu, H. Y. et al. Deep regionlets for object detection. Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer, 2018, 827-844.
[41] Shrivastava, A. et al. Beyond skip connections: top-down modulation for object detection. Preprint at https://doi.org/10.48550/arXiv.1612.06851 (2016).
[42] Zhang, S. F. et al. Single-shot refinement neural network for object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018, 4203-4212.
[43] Zhao, Q. J. et al. M2Det: a single-shot object detector based on multi-level feature pyramid network. Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Honolulu, Hawaii, USA: AAAI, 2019, 9259-9266.