[1] Xu, C. N. et al. Artificial skin to sense mechanical stress by visible light emission. Appl. Phys. Lett. 74, 1236-1238 (1999). doi: 10.1063/1.123510
[2] Timilsina, S. et al. A life-time reproducible mechano-luminescent paint for the visualization of crack propagation mechanisms in concrete structures. Int. J. Fatigue 101, 75-79 (2017). doi: 10.1016/j.ijfatigue.2017.03.011
[3] Jia, Y., Yei, M. & Jia, W. Y. Stress-induced mechanoluminescence in SrAl2O4:Eu2+, Dy3+.Opt. Mater. 28, 974-979 (2006). doi: 10.1016/j.optmat.2005.05.014
[4] Xu, C. N. et al. Direct view of stress distribution in solid by mechanoluminescence. Appl. Phys. Lett. 74, 2414-2416 (1999). doi: 10.1063/1.123865
[5] Yoshida, A. et al. Mechanoluminescent testing as an efficient inspection technique for the management of infrastructures. J. Disaster Res. 12, 506-514 (2017). doi: 10.20965/jdr.2017.p0506
[6] Kim, J. S. & Kim, G. W. New non-contacting torque sensor based on the mechanoluminescence of ZnS:Cu microparticles. Sensors Actuators A 218, 125-131 (2014). doi: 10.1016/j.sna.2014.07.023
[7] Zhan, T. Z. et al. Enhancement of impact-induced mechanoluminescence by swift heavy ion irradiation. Appl. Phys. Lett. 100, 014101 (2012). doi: 10.1063/1.3673342
[8] Zhan, T. Z. et al. Direct visualization of ultrasonic power distribution using mechanoluminescent film. Ultrason. Sonochem. 18, 436-439 (2011). doi: 10.1016/j.ultsonch.2010.07.017
[9] Bünzli, J. C. G. & Wong, K. L. Lanthanide mechanoluminescence. J. Rare Earths 36, 1-41 (2018). doi: 10.1016/j.jre.2017.09.005
[10] Jeong, S. M. et al. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer. Energy Environ. Sci. 7, 3338-3346 (2014). doi: 10.1039/C4EE01776E
[11] Feng, A. & Smet, P. F. A review of mechanoluminescence in inorganic solids: compounds, mechanisms, models and applications. Materials 11, 484 (2018). doi: 10.3390/ma11040484
[12] Zhang, J. C. et al. Trap-controlled mechanoluminescent materials. Prog. Mater. Sci. 103, 678-742 (2019). doi: 10.1016/j.pmatsci.2019.02.001
[13] Timilsina, S. et al. Review of state-of-the-art sensor applications using mechanoluminescence microparticles. Int. J. Precis. Eng. Manuf. 17, 1237-1247 (2016). doi: 10.1007/s12541-016-0149-y
[14] Xu, C. N. et al. Strong elasticoluminescence from monoclinic-structure SrAl2O4. Appl. Phys. Lett. 84, 3040-3042 (2004). doi: 10.1063/1.1705716
[15] Akiyama, M., XuC. N. & NonakaK. Intense visible light emission from stress-activated ZrO2:Ti. Appl. Phys. Lett. 81, 457-459 (2002). doi: 10.1063/1.1494463
[16] Wang, X. D. et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv. Mater. 27, 2324-2331 (2015). doi: 10.1002/adma.201405826
[17] Xu, C. N. et al. Dynamic visualization of stress distribution by mechanoluminescence image. Appl. Phys. Lett. 76, 179-181 (2000). doi: 10.1063/1.125695
[18] Timilsina, S. et al. Optical evaluation of in situ crack propagation by using mechanoluminescence of SrAl2O4:Eu2+, Dy3+. J. Am. Ceram. Soc. 98, 2197-2204 (2015). doi: 10.1111/jace.13566
[19] Terasaki, N. & Xu, C. N. Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor. IEEE Sens. J. 13, 3999-4004 (2013). doi: 10.1109/JSEN.2013.2264665
[20] Du, Y. Y. et al. Mechanically excited multicolor luminescence in lanthanide ions. Adv. Mater. 31, 1807062 (2019). doi: 10.1002/adma.201807062
[21] Zhang, J. C. et al. Sacrificing trap density to achieve short-delay and high-contrast mechanoluminescence for stress imaging. Acta Mater. 152, 148-154 (2018). doi: 10.1016/j.actamat.2018.04.011
[22] Chandra, V. K. & Chandra, B. P. Suitable materials for elastico mechanoluminescence-based stress sensors. Opt. Mater. 34, 194-200 (2011). doi: 10.1016/j.optmat.2011.08.003
[23] Chandra, B. P. Development of mechanoluminescence technique for impact studies. J. Lumin. 131, 1203-1210 (2011). doi: 10.1016/j.jlumin.2011.02.027
[24] Sohn, K. S. et al. Mechanically driven luminescence in a ZnS:Cu-PDMS composite. APL Mater. 4, 106102 (2016). doi: 10.1063/1.4964139
[25] Botterman, J. et al. Mechanoluminescence in BaSi2O2N2:Eu. Acta Mater. 60, 5494-5500 (2012). doi: 10.1016/j.actamat.2012.06.055
[26] Botterman, J. et al. Persistent luminescence in MSi2O2N2:Eu phosphors. Opt. Mater. Express 2, 341-349 (2012). doi: 10.1364/OME.2.000341
[27] Xie, R. J. et al. White light-emitting diodes (LEDs) using (oxy)nitride phosphors. J. Phys. D Appl. Phys. 41, 144013 (2008). doi: 10.1088/0022-3727/41/14/144013
[28] Smet, P. F. et al. in Handbook on the Physics and Chemistry of Rare Earths. Ch. 274 ed. by Bünzli, J. C. G. & Pecharsky, V. K. (Elsevier, Amsterdam, 2015).
[29] Van den Eeckhout, K., Smet, P. F. & Poelman, D. Persistent luminescence in Eu2+-doped compounds: a review. Materials 3, 2536-2566 (2010). doi: 10.3390/ma3042536
[30] Van den Eeckhout, K., Poelman, D. & Smet, P. F. Persistent luminescence in non-Eu2+-doped compounds: a review. Materials 6, 2789-2818 (2013). doi: 10.3390/ma6072789
[31] Botterman, J. & Smet, P. F. Eu, Dy in outdoor conditions: saved by the trap distribution. Opt. Express 23, A868-A881 (2015). doi: 10.1364/OE.23.00A868
[32] Maldiney, T. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418-426 (2014). doi: 10.1038/nmat3908
[33] Li, Y., Gecevicius, M. & Qiu, J. R. Long persistent phosphors-from fundamentals to applications. Chem. Soc. Rev. 45, 2090-2136 (2016). doi: 10.1039/C5CS00582E
[34] Chen, R. & Pagonis, V. Thermally and Optically Stimulated Luminescence: A Simulation Approach (John Wiley & Sons, Chichester, 2011).
[35] Yukihara, E. G. & McKeever, S. W. S. Optically Stimulated Luminescence: Fundamentals and Applications (John Wiley & Sons, Chichester, 2011).
[36] Ilatovskii, D. A. et al. Stimuli-responsive mechanoluminescence in different matrices. ACS Omega 3, 18803-18810 (2018). doi: 10.1021/acsomega.8b02696
[37] Imani Azad, A., Rahimi, M. R. & Yun, G. Quantitative full-field strainmeasurements by SAOED (SrAl2O4:Eu2+, Dy3+) mechanoluminescent materials. Smart Mater. Struct. 25, 095032 (2016). doi: 10.1088/0964-1726/25/9/095032
[38] McKeever, S. W. S. Thermoluminescence of Solids (Cambridge University Press, Cambridge, 1985).
[39] Bos, A. J. J. Thermoluminescence as a research tool to investigate luminescence mechanisms. Materials 10, 1357 (2017). doi: 10.3390/ma10121357
[40] De Clercq, O. Q. & Poelman, D. Local, temperature-dependent trapping and detrapping in the LiGa5O8:Cr infrared emitting persistent phosphor. ECS J. Solid State Sci. Technol. 7, R3171-R3175 (2018). doi: 10.1149/2.0211801jss
[41] Zhuang, Y. X. et al. Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials. Adv. Funct. Mater. 28, 1705769 (2018). doi: 10.1002/adfm.201705769
[42] Xu, J. et al. Toward rechargeable persistent luminescence for the first and third biological windows via persistent energy transfer and electron trap redistribution. Inorg. Chem. 57, 5194-5203 (2018). doi: 10.1021/acs.inorgchem.8b00218
[43] Liu, L. S. et al. Scalable elasticoluminescent strain sensor for precise dynamic stress imaging and onsite infrastructure diagnosis. Adv. Mater. Technol. 4, 1800336 (2019). doi: 10.1002/admt.201800336
[44] Sharma, S. K. et al. Persistent luminescence induced by near infra-red photostimulation in chromium-doped zinc gallate for in vivo optical imaging. Opt. Mater. 63, 51-58 (2017). doi: 10.1016/j.optmat.2016.06.053
[45] Liu, F. et al. Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Sci. Rep. 3, 1554 (2013). doi: 10.1038/srep01554