[1] Psaltis, D., Quake, S. R. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006). doi: 10.1038/nature05060
[2] Nagelberg, S. et al. Reconfigurable and responsive droplet-based compound micro-lenses. Nat. Commun. 8, 14673 (2017). doi: 10.1038/ncomms14673
[3] Maffli, L., Rosset, S., Ghilardi, M., Carpi, F. & Shea, H. Ultrafast all-polymer electrically tunable silicone lenses. Adv. Funct. Mater. 25, 1656–1665 (2015). doi: 10.1002/adfm.201403942
[4] Hasan, N., Banerjee, A., Kim, H. & Mastrangelo, C. H. Tunable-focus lens for adaptive eyeglasses. Opt. Express 25, 1221–1233 (2017). doi: 10.1364/OE.25.001221
[5] Maragò, O. M., Jones, P. H., Gucciardi, P. G., Volpe, G. & Ferrari, A. C. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 8, 807–819 (2013). doi: 10.1038/nnano.2013.208
[6] Du, T. et al. Complex nanoscale-ordered liquid crystal polymer film for high transmittance holographic polarizer. Adv. Mater. 27, 7191–7195 (2015). doi: 10.1002/adma.201502395
[7] Booth, M. J. Adaptive optical microscopy: the ongoing quest for a perfect image. Light.: Sci. Appl. 3, e165 (2014). doi: 10.1038/lsa.2014.46
[8] Liebetraut, P., Petsch, S., Liebeskind, J. & Zappe, H. Elastomeric lenses with tunable astigmatism. Light.: Sci. Appl. 2, e98 (2013). doi: 10.1038/lsa.2013.54
[9] Bonora, S. et al. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens. Opt. Express 23, 21931–21941 (2015). doi: 10.1364/OE.23.021931
[10] Rosales-Guzmán, C., Forbes, A. How to shape light with spatial light modulators. SPIE Digital Library. Bellingham, Washington, 2017.
[11] Buchnev, O., Podoliak, N., Kaczmarek, M., Zheludev, N. I. & Fedotov, V. A. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch. Adv. Opt. Mater. 3, 674–679 (2015). doi: 10.1002/adom.201400494
[12] Kim, J., Kim, J., Na, J. H., Lee, B. & Lee, S. D. Liquid crystal-based square lens array with tunable focal length. Opt. Express 22, 3316–3324 (2014). doi: 10.1364/OE.22.003316
[13] Zhang, Z. C., You, Z. & Chu, D. P. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light.: Sci. Appl. 3, e213 (2014). doi: 10.1038/lsa.2014.94
[14] Lin, Y. H. & Chen, H. S. Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications. Opt. Express 21, 9428–9436 (2013). doi: 10.1364/OE.21.009428
[15] Graham-Rowe, D. Liquid lenses make a splash. Nat. Photon. Sample: 2–4; 2006.
[16] Ding, Z. Q. et al. Surface profiling of an aspherical liquid lens with a varied thickness membrane. Opt. Express 25, 3122–3132 (2017). doi: 10.1364/OE.25.003122
[17] Ren, H. W., Fox, D., Anderson, A., Wu, B. & Wu, S. T. Tunable-focus liquid lens controlled using a servo motor. Opt. Express 14, 8031–8036 (2006). doi: 10.1364/OE.14.008031
[18] Murade, C. U., van der Ende, D. & Mugele, F. High speed adaptive liquid microlens array. Opt. Express 20, 18180–18187 (2012). doi: 10.1364/OE.20.018180
[19] Brown, C. V., Wells, G. G., Newton, M. I. & McHale, G. Voltage-programmable liquid optical interface. Nat. Photon. 3, 403–405 (2009). doi: 10.1038/nphoton.2009.99
[20] Dong, L., Agarwal, A. K., Beebe, D. J. & Jiang, H. R. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006). doi: 10.1038/nature05024
[21] Xu, S. et al. Adaptive liquid lens actuated by photo-polymer. Opt. Express 17, 17590–17595 (2009). doi: 10.1364/OE.17.017590
[22] Mao, X. L. et al. Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom. Lab. Chip. 9, 2050–2058 (2009). doi: 10.1039/b822982a
[23] Shrestha, P. K., Chun, Y. T. & Chu, D. P. A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles. Light.: Sci. Appl. 4, e259 (2015). doi: 10.1038/lsa.2015.32
[24] Ho, M. S., Natansohn, A., Barrett, C. & Rochon, P. Azo polymers for reversible optical storage. 8. The effect of polarity of the azobenzene groups. Can. J. Chem. 73, 1773–1778 (1995). doi: 10.1139/v95-218
[25] Goldenberg, L. M., Lisinetskii, V. & Schrader, S. Stable lasing in azobenzene polyelectrolyte with polarization gratings as distributed feedback. Adv. Opt. Mater. 2, 768–775 (2014). doi: 10.1002/adom.201300425
[26] Kravchenko, A., Shevchenko, A., Ovchinnikov, V., Priimagi, A. & Kaivola, M. Optical interference lithography using azobenzene-functionalized polymers for micro-and nanopatterning of silicon. Adv. Mater. 23, 4174–4177 (2011). doi: 10.1002/adma.201101888
[27] Pirani, F. et al. Light-driven reversible shaping of individual azopolymeric micro-pillars. Sci. Rep. 6, 31702 (2016). doi: 10.1038/srep31702
[28] Ambrosio, A., Maddalena, P. & Marrucci, L. Molecular model for light-driven spiral mass transport in azopolymer films. Phys. Rev. Lett. 110, 146102 (2013). doi: 10.1103/PhysRevLett.110.146102
[29] Tanchak, O. M. & Barrett, C. J. Light-induced reversible volume changes in thin films of Azo polymers: the photomechanical effect. Macromolecules 38, 10566–10570 (2005). doi: 10.1021/ma051564w
[30] Veer, P. U., Pietsch, U. & Mueller, A. D. Alteration of the mechanical properties of azopolymer film in the process of surface relief grating formation. Appl. Phys. Lett. 94, 231911 (2009). doi: 10.1063/1.3153847
[31] Landry, M. J. et al. Photo-induced structural modification of silk gels containing azobenzene side groups. Soft Matter 13, 2903–2906 (2017). doi: 10.1039/C7SM00446J
[32] Zeng, H. et al. Light-fueled microscopic walkers. Adv. Mater. 27, 3883–3887 (2015). doi: 10.1002/adma.201501446
[33] Roppolo, I. et al. 3D printable light-responsive polymers. Mater. Horiz. 4, 396–401 (2017). doi: 10.1039/C7MH00072C
[34] Hariharan, P., Oreb, B. F. & Eiju, T. Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm. Appl. Opt. 26, 2504–2506 (1987). doi: 10.1364/AO.26.002504
[35] Ghiglia, D. C. & Pritt, M. D. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software. (Wiley Interscience, New York, 1998).
[36] Richerzhagen, B. Finite element ray tracing: a new method for ray tracing in gradient-index media. Appl. Opt. 35, 6186–6189 (1996). doi: 10.1364/AO.35.006186
[37] Wang, X. S., She, W. L. & Lee, W. K. Optical spatial soliton supported by photoisomerization nonlinearity in a polymer with a background beam. J. Opt. Soc. Am. B 23, 2127–2133 (2006). doi: 10.1364/JOSAB.23.002127
[38] Gerrard, A. & Burch, J. M. Introduction to Matrix Methods in Optics. (Courier Dover, New York, 1994).
[39] Fahrbach, F. O., Voigt, F. F., Schmid, B., Helmchen, F. & Huisken, J. Rapid 3D light-sheet microscopy with a tunable lens. Opt. Express 21, 21010–21026 (2013). doi: 10.1364/OE.21.021010
[40] Sancataldo, G. et al. Three-dimensional multiple-particle tracking with nanometric precision over tunable axial ranges. Optica 4, 367–373 (2017). doi: 10.1364/OPTICA.4.000367
[41] Moore, D. T. Gradient-index optics: a review. Appl. Opt. 19, 1035–1038 (1980). doi: 10.1364/AO.19.001035
[42] Zickar, M., Noell, W., Marxer, C. & de Rooij, N. MEMS compatible micro-GRIN lenses for fiber to chip coupling of light. Opt. Express 14, 4237–4249 (2006). doi: 10.1364/OE.14.004237