[1] Gabor, D. A new microscopic principle. Nature 161, 777-778 (1948). doi: 10.1038/161777a0
[2] Javidi, B. et al. Roadmap on digital holography [Invited]. Optics Express 29, 35078-35118 (2021). doi: 10.1364/OE.435915
[3] Sheridan, J. T. et al. Roadmap on holography. Journal of Optics 22, 123002 (2020). doi: 10.1088/2040-8986/abb3a4
[4] Liu, G. & Scott, P. D. Phase retrieval and twin-image elimination for in-line Fresnel holograms. Journal of the Optical Society of America A 4, 159-165 (1987). doi: 10.1364/JOSAA.4.000159
[5] Barton, J. J. Removing multiple scattering and twin images from holographic images. Physical Review Letters 67, 3106-3109 (1991). doi: 10.1103/PhysRevLett.67.3106
[6] Shechtman, Y. et al. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Processing Magazine 32, 87-109 (2015). doi: 10.1109/MSP.2014.2352673
[7] Dong, J. et al. Phase retrieval: from computational imaging to machine learning: a tutorial. IEEE Signal Processing Magazine 40, 45-57 (2023). doi: 10.1109/MSP.2022.3219240
[8] Almoro, P., Pedrini, G. & Osten, W. Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field. Applied Optics 45, 8596-8605 (2006). doi: 10.1364/AO.45.008596
[9] Waller, L., Ti an, L. & Barbastathis, G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives. Optics Express 18, 12552-12561 (2010). doi: 10.1364/OE.18.012552
[10] Zuo, C. et al. Transport of intensity equation: a tutorial. Optics and Lasers in Engineering 135, 106187 (2020). doi: 10.1016/j.optlaseng.2020.106187
[11] Bao, P. et al. Phase retrieval using multiple illumination wavelengths. Optics Letters 33, 309-311 (2008). doi: 10.1364/OL.33.000309
[12] Bai, Y. R. et al. Ptychographic microscopy via wavelength scanning. APL Photonics 2, 056101 (2017). doi: 10.1063/1.4979512
[13] Fan, Y. et al. Single-shot isotropic quantitative phase microscopy based on color-multiplexed differential phase contrast. APL Photonics 4, 121301 (2019). doi: 10.1063/1.5124535
[14] Gao, Y. H. & Cao, L. C. Projected refractive index framework for multi-wavelength phase retrieval. Optics Letters 47, 5965-5968 (2022). doi: 10.1364/OL.476707
[15] Faulkner, H. M. L. & Rodenburg, J. M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Physical Review Letters 93, 023903 (2004). doi: 10.1103/PhysRevLett.93.023903
[16] Zhang, Z. B. et al. Invited article: mask-modulated lensless imaging with multi-angle illuminations. APL Photonics 3, 060803 (2018). doi: 10.1063/1.5026226
[17] Jiang, S. W. et al. Wide-field, high-resolution lensless on-chip microscopy via near-field blind ptychographic modulation. Lab on a Chip 20, 1058-1065 (2020). doi: 10.1039/C9LC01027K
[18] Zheng, G. A., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photonics 7, 739-745 (2013). doi: 10.1038/nphoton.2013.187
[19] Tian, L. et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy. Optica 2, 904-911 (2015). doi: 10.1364/OPTICA.2.000904
[20] Zheng, G. A. et al. Concept, implementations and applications of Fourier ptychography. Nature Reviews Physics 3, 207-223 (2021). doi: 10.1038/s42254-021-00280-y
[21] Zhang, F. C., Pedrini, G. & Osten, W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation. Physical Review A 75, 043805 (2007). doi: 10.1103/PhysRevA.75.043805
[22] Katkovnik, V. et al. Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments. Optica 4, 786-794 (2017). doi: 10.1364/OPTICA.4.000786
[23] Wu, Y. C., Sharma, M. K. & Veeraraghavan, A. WISH: wavefront imaging sensor with high resolution. Light: Science & Applications 8, 44 (2019).
[24] Li, R. J. & Cao, L. C. Complex wavefront sensing based on alternative structured phase modulation. Applied Optics 60, A48-A53 (2021). doi: 10.1364/AO.405630
[25] Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform. Optics Letters 3, 27-29 (1978). doi: 10.1364/OL.3.000027
[26] Tian, Y. C. & Fienup, J. R. Phase retrieval with only a nonnegativity constraint. Optics Letters 48, 135-138 (2023). doi: 10.1364/OL.478581
[27] Fienup, J. R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. Journal of the Optical Society of America A 4, 118-123 (1987). doi: 10.1364/JOSAA.4.000118
[28] Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Physical Review B 68, 140101 (2003). doi: 10.1103/PhysRevB.68.140101
[29] Abbey, B. et al. Keyhole coherent diffractive imaging. Nature Physics 4, 394-398 (2008). doi: 10.1038/nphys896
[30] Latychevskaia, T. & Fink, H. W. Solution to the twin image problem in holography. Physical Review Letters 98, 233901 (2007). doi: 10.1103/PhysRevLett.98.233901
[31] Zhang, K. Y. J. & Main, P. Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Crystallographica Section A: Foundations of Crystallography 46, 41-46 (1990). doi: 10.1107/S0108767389009311
[32] Elser, V. Solution of the crystallographic phase problem by iterated projections. Acta Crystallographica Section A: Foundations of Crystallography 59, 201-209 (2003). doi: 10.1107/S0108767303002812
[33] Levi, A. & Stark, H. Image restoration by the method of generalized projections with application to restoration from magnitude. Journal of the Optical Society of America A 1, 932-943 (1984). doi: 10.1364/JOSAA.1.000932
[34] Elser, V. Phase retrieval by iterated projections. Journal of the Optical Society of America A 20, 40-55 (2003). doi: 10.1364/JOSAA.20.000040
[35] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237-246 (1972).
[36] Fienup, J. R. Phase retrieval algorithms: a comparison. Applied Optics 21, 2758-2769 (1982). doi: 10.1364/AO.21.002758
[37] Bauschke, H. H., Combettes, P. L. & Luke, D. R. Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. Journal of the Optical Society of America A 19, 1334-1345 (2002). doi: 10.1364/JOSAA.19.001334
[38] Marchesini, S. Invited article: a unified evaluation of iterative projection algorithms for phase retrieval. Review of Scientific Instruments 78, 011301 (2007). doi: 10.1063/1.2403783
[39] Latychevskaia, T. Iterative phase retrieval for digital holography: tutorial. Journal of the Optical Society of America A 36, D31-D40 (2019). doi: 10.1364/JOSAA.36.000D31
[40] Rong, L. et al. Twin image elimination from two in-line holograms via phase retrieval. Chinese Optics Letters 10, 060902 (2012). doi: 10.3788/COL201210.060902
[41] Brady, D. J. et al. Compressive holography. Optics Express 17, 13040-13049 (2009). doi: 10.1364/OE.17.013040
[42] Rivenson, Y., Stern, A. & Javidi, B. Compressive Fresnel holography. Journal of Display Technology 6, 506-509 (2010). doi: 10.1109/JDT.2010.2042276
[43] Rivenson, Y., Stern, A. & Javidi, B. Overview of compressive sensing techniques applied in holography. Applied Optics 52, A423-A432 (2013). doi: 10.1364/AO.52.00A423
[44] Moravec, M. L., Romberg, J. K. & Baraniuk, R. G. Compressive phase retrieval. Proceedings of SPIE 6701, Wavelets XII. San Diego, CA, USA: SPIE, 2007, 712–722.
[45] Shechtman, Y., Be ck, A. & Eldar, Y. C. GESPAR: Efficient phase retrieval of sparse signals. IEEE Transactions on Signal Processing 62, 928-938 (2014). doi: 10.1109/TSP.2013.2297687
[46] Jaganathan, K., Oymak, S. & Hassibi, B. Sparse phase retrieval: uniqueness guarantees and recovery algorithms. IEEE Transactions on Signal Processing 65, 2402-2410 (2017). doi: 10.1109/TSP.2017.2656844
[47] Denis, L. et al. Inline hologram reconstruction with sparsity constraints. Optics Letters 34, 3475-3477 (2009). doi: 10.1364/OL.34.003475
[48] Wang, G. et al. Sparse phase retrieval via truncated amplitude flow. IEEE Transactions on Signal Processing 66, 479-491 (2018). doi: 10.1109/TSP.2017.2771733
[49] Pacheco, C. et al. Adaptive sparse reconstruction for lensless digital holography via PSF estimation and phase retrieval. Optics Express 30, 33433-33448 (2022). doi: 10.1364/OE.458360
[50] Kostenko, A. et al. Phase retrieval in in-line x-ray phase contrast imaging based on total variation minimization. Optics Express 21, 710-723 (2013). doi: 10.1364/OE.21.000710
[51] Horisaki, R. et al. Single-shot phase imaging with a coded aperture. Optics Letters 39, 6466-6469 (2014). doi: 10.1364/OL.39.006466
[52] Horisaki, R., Egami, R. & Tanida, J. Single-shot phase imaging with randomized light (SPIRaL). Optics Express 24, 3765-3773 (2016). doi: 10.1364/OE.24.003765
[53] Zhang, W. H. et al. Twin-image-free holography: a compressive sensing approach. Physical Review Letters 121, 093902 (2018). doi: 10.1103/PhysRevLett.121.093902
[54] Momey, F. et al. From Fienupos phase retrieval techniques to regularized inversion for in-line holography: tutorial. Journal of the Optical Society of America A 36, D62-D80 (2019). doi: 10.1364/JOSAA.36.000D62
[55] Jolivet, F. et al. Regularized reconstruction of absorbing and phase objects from a single in-line hologram, application to fluid mechanics and micro-biology. Optics Express 26, 8923-8940 (2018). doi: 10.1364/OE.26.008923
[56] Chang, H. B. et al. Total variationɃbased phase retrieval for Poisson noise removal. SIAM Journal on Imaging Sciences 11, 24-55 (2018). doi: 10.1137/16M1103270
[57] Guo, C. et al. Lensfree on-chip microscopy based on dual-plane phase retrieval. Optics Express 27, 35216-35229 (2019). doi: 10.1364/OE.27.035216
[58] Wu, J. C., Ya ng, F. & Cao, L. C. Resolution enhancement of long-range imaging with sparse apertures. Optics and Lasers in Engineering 155, 107068 (2022). doi: 10.1016/j.optlaseng.2022.107068
[59] Gaur, C., Mohan, B. & Khare, K. Sparsity-assisted solution to the twin image problem in phase retrieval. Journal of the Optical Society of America A 32, 1922-1927 (2015). doi: 10.1364/JOSAA.32.001922
[60] Villanueva-Perez, P. et al. Contrast-transfer-function phase retrieval based on compressed sensing. Optics Letters 42, 1133-1136 (2017). doi: 10.1364/OL.42.001133
[61] Galande, A. S. et al. Quantitative phase imaging of biological cells using lensless inline holographic microscopy through sparsity-assisted iterative phase retrieval algorithm. Journal of Applied Physics 132, 243102 (2022). doi: 10.1063/5.0123677
[62] Rivenson, Y. et al. Sparsity-based multi-height phase recovery in holographic microscopy. Scientific Reports 6, 37862 (2016). doi: 10.1038/srep37862
[63] Loock, S. & Plonka, G. Phase retrieval for Fresnel measurements using a shearlet sparsity constraint. Inverse Problems 30, 055005 (2014). doi: 10.1088/0266-5611/30/5/055005
[64] Pein, A. et al. Using sparsity information for iterative phase retrieval in x-ray propagation imaging. Optics Express 24, 8332-8343 (2016). doi: 10.1364/OE.24.008332
[65] Tillmann, A. M., Eldar, Y. C. & Mairal, J. DOLPHInjdictionary learning for phase retrieval. IEEE Transactions on Signal Processing 64, 6485-6500 (2016). doi: 10.1109/TSP.2016.2607180
[66] Krishnan, J. P., Bioucas-Dias, J. M. & Katkovnik, V. Dictionary learning phase retrieval from noisy diffraction patterns. Sensors 18, 4006 (2018). doi: 10.3390/s18114006
[67] Li, X. Y. et al. Dictionary-based compressive Fourier ptychography. Optics Letters 47, 2314-2317 (2022). doi: 10.1364/OL.450852
[68] Heide, F. et al. ProxImaL: Efficient image optimization using proximal algorithms. ACM Transactions on Graphics 35, 84 (2016).
[69] Katkovnik, V. & Astola, J. Phase retrieval via spatial light modulator phase modulation in 4f optical setup: numerical inverse imaging with sparse regularization for phase and amplitude. Journal of the Optical Society of America A 29, 105-116 (2012). doi: 10.1364/JOSAA.29.000105
[70] Metzler, C. A., Maleki, A. & Baraniuk, R. G. BM3D-PRGAMP: compressive phase retrieval based on BM3D denoising. Proceedings of 2016 IEEE International Conference on Multimedia & Expo Workshops. Seattle, WA, USA: IEEE, 2016, 2504–2508.
[71] Shi, B. S. et al. Constrained phase retrieval: when alternating projection meets regularization. Journal of the Optical Society of America B 35, 1271-1281 (2018). doi: 10.1364/JOSAB.35.001271
[72] Jin, X. Y. et al. Iterative denoising phase retrieval method for twin-image elimination in continuous-wave terahertz in-line digital holography. Optics and Lasers in Engineering 152, 106986 (2022). doi: 10.1016/j.optlaseng.2022.106986
[73] Guo, C. et al. Lensfree on-chip microscopy based on single-plane phase retrieval. Optics Express 30, 19855-19870 (2022). doi: 10.1364/OE.458400
[74] Sinha, A. et al. Lensless computational imaging through deep learning. Optica 4, 1117-1125 (2017). doi: 10.1364/OPTICA.4.001117
[75] Nguyen, T. et al. Deep learning approach for Fourier ptychography microscopy. Optics Express 26, 26470-26484 (2018). doi: 10.1364/OE.26.026470
[76] Rivenson, Y., Wu, Y. C. & Ozcan, A. Deep learning in holography and coherent imaging. Light: Science & Applications 8, 85 (2019).
[77] Hand, P., Leong, O. & Voroninski, V. Phase retrieval under a generative prior. Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada: Curran Associates Inc., 2018, 9154–9164.
[78] Metzler, C. et al. prDeep: robust phase retrieval with a flexible deep network. Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: PMLR, 2018, 3501–3510.
[79] Işıl, Ç., Oktem, F. S. & Koç, A. Deep iterative reconstruction for phase retrieval. Applied Optics 58, 5422-5431 (2019). doi: 10.1364/AO.58.005422
[80] Wang, Y. T., Sun, X. H. & Fleischer, J. When deep denoising meets iterative phase retrieval. Proceedings of the 37th International Conference on Machine Learning. Online, PMLR, 2020, 10007–10017.
[81] Shi, B. S., Li an, Q. S. & Chang, H. B. Deep prior-based sparse representation model for diffraction imaging: A plug-and-play method. Signal Processing 168, 107350 (2020). doi: 10.1016/j.sigpro.2019.107350
[82] Wang, F. et al. Phase imaging with an untrained neural network. Light: Science & Applications 9, 77 (2020).
[83] Bostan, E. et al. Deep phase decoder: self-calibrating phase microscopy with an untrained deep neural network. Optica 7, 559-562 (2020). doi: 10.1364/OPTICA.389314
[84] Chang, X. Y., Bi an, L. H. & Zhang, J. Large-scale phase retrieval. eLight 1, 4 (2021). doi: 10.1186/s43593-021-00004-w
[85] Zhang, F. L. et al. Physics-based iterative projection complex neural network for phase retrieval in lensless microscopy imaging. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, USA: IEEE, 2021, 10518–10526.
[86] Zhang, X. Y., Wa ng, F. & Situ, G. H. BlindNet: an untrained learning approach toward computational imaging with model uncertainty. Journal of Physics D: Applied Physics 55, 034001 (2021).
[87] Yang, D. Y. et al. Coherent modulation imaging using a physics-driven neural network. Optics Express 30, 35647-35662 (2022). doi: 10.1364/OE.472083
[88] Chen, Z. J. et al. Phase recovery with deep complex-domain priors. IEEE Signal Processing Letters 29, 887-891 (2022). doi: 10.1109/LSP.2022.3160927
[89] Kang, I. et al. Simultaneous spectral recovery and CMOS micro-LED holography with an untrained deep neural network. Optica 9, 1149-1155 (2022). doi: 10.1364/OPTICA.470712
[90] Zhu, H. et al. DNF: diffractive neural field for lensless microscopic imaging. Optics Express 30, 18168-18178 (2022). doi: 10.1364/OE.455360
[91] Tian, Z. M. et al. Lensless computational imaging with a hybrid framework of holographic propagation and deep learning. Optics Letters 47, 4283-4286 (2022). doi: 10.1364/OL.464764
[92] Luo, H. X. et al. Diffraction-Net: a robust single-shot holography for multi-distance lensless imaging. Optics Express 30, 41724-41740 (2022). doi: 10.1364/OE.472658
[93] Situ, G. H. Deep holography. Light: Advanced Manufacturing 3, 278-300 (2022).
[94] Rudin, L. I., Osher, S. & Fatemi, E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60, 259-268 (1992). doi: 10.1016/0167-2789(92)90242-F
[95] Chambolle, A. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20, 89-97 (2004). doi: 10.1023/B:JMIV.0000011321.19549.88
[96] Fabian, Z. et al. 3D phase retrieval at nano-scale via accelerated Wirtinger flow. Proceedings of the 2020 28th European Signal Processing Conference. Amsterdam, Netherlands: IEEE, 2021, 2080–2084.
[97] Berdeu, A. et al. Comparative study of fully three-dimensional reconstruction algorithms for lens-free microscopy. Applied Optics 56, 3939-3951 (2017). doi: 10.1364/AO.56.003939
[98] Chen, M. et al. Multi-layer Born multiple-scattering model for 3D phase microscopy. Optica 7, 394-403 (2020). doi: 10.1364/OPTICA.383030
[99] Sun, D. et al. Influence of sparse constraint functions on compressive holographic tomography. Applied Optics 60, A111-A119 (2021). doi: 10.1364/AO.404341
[100] Daloglu, M. U. et al. Low-cost and portable UV holographic microscope for high-contrast protein crystal imaging. APL Photonics 4, 030804 (2019). doi: 10.1063/1.5080158
[101] Valzania, L. et al. THz coherent lensless imaging. Applied Optics 58, G256-G275 (2019). doi: 10.1364/AO.58.00G256
[102] Goodman, J. W. Introduction to Fourier Optics. 3rd edn. (Greenwoood Village: Roberts and Company Publishers, 2005).
[103] Matakos, A., Ramani, S. & Fessler, J. A. Accelerated edge-preserving image restoration without boundary artifacts. IEEE Transactions on Image Processing 22, 2019-2029 (2013). doi: 10.1109/TIP.2013.2244218
[104] Candès, E. J., Li, X. D. & Soltanolkotabi, M. Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Transactions on Information Theory 61, 1985-2007 (2015). doi: 10.1109/TIT.2015.2399924
[105] Sun, J., Qu, Q. & Wright, J. A geometric analysis of phase retrieval. Foundations of Computational Mathematics 18, 1131-1198 (2018). doi: 10.1007/s10208-017-9365-9
[106] Isernia, T., Leone, G. & Pierri, R. Radiation pattern evaluation from near-field intensities on planes. IEEE Transactions on Antennas and Propagation 44, 701 (1996). doi: 10.1109/8.496257
[107] Zhang, H. S. & Liang, Y. B. Reshaped Wirtinger flow for solving quadratic system of equations. Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates Inc., 2016, 2630–2638.
[108] Wang, G., Giannakis, G. B. & Eldar, Y. C. Solving systems of random quadratic equations via truncated amplitude flow. IEEE Transactions on Information Theory 64, 773-794 (2017).
[109] Yang, C. et al. Iterative algorithms for ptychographic phase retrieval. (Berkeley, CA, USA: Lawrence Berkeley National Lab., 2011).
[110] Fannjiang, A. & Strohmer, T. The numerics of phase retrieval. Acta Numerica 29, 125-228 (2020). doi: 10.1017/S0962492920000069
[111] Yeh, L. H. et al. Experimental robustness of Fourier ptychography phase retrieval algorithms. Optics Express 23, 33214-33240 (2015). doi: 10.1364/OE.23.033214
[112] Gao, Y. H. & Cao, L. C. Generalized optimization framework for pixel super-resolution imaging in digital holography. Optics Express 29, 28805-28823 (2021). doi: 10.1364/OE.434449
[113] Aghamiry, H. S., Gholami, A. & Operto, S. Complex-valued imaging with total variation regularization: an application to full-waveform inversion in visco-acoustic media. SIAM Journal on Imaging Sciences 14, 58-91 (2021). doi: 10.1137/20M1344780
[114] Zhang, Y. B. et al. Edge sparsity criterion for robust holographic autofocusing. Optics Letters 42, 3824-3827 (2017). doi: 10.1364/OL.42.003824
[115] Ren, Z. B., Xu, Z. M. & Lam, E. Y. Learning-based nonparametric autofocusing for digital holography. Optica 5, 337-344 (2018). doi: 10.1364/OPTICA.5.000337
[116] Trusiak, M. et al. Darkfocus: numerical autofocusing in digital in-line holographic microscopy using variance of computational dark-field gradient. Optics and Lasers in Engineering 134, 106195 (2020). doi: 10.1016/j.optlaseng.2020.106195
[117] Zhang, J. L. et al. Resolution analysis in a lens-free on-chip digital holographic microscope. IEEE Transactions on Computational Imaging 6, 697-710 (2020). doi: 10.1109/TCI.2020.2964247
[118] Huang, Z. Z. et al. Dual-plane coupled phase retrieval for non-prior holographic imaging. PhotoniX 3, 3 (2022). doi: 10.1186/s43074-021-00046-w
[119] Tang, J. et al. Comparison of common-path off-axis digital holography and transport of intensity equation in quantitative phase measurement. Optics and Lasers in Engineering 157, 107126 (2022). doi: 10.1016/j.optlaseng.2022.107126
[120] Rivenson, Y. et al. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning. Light: Science & Applications 8, 23 (2019).
[121] Jiang, S. W. et al. Resolution-enhanced parallel coded ptychography for high-throughput optical imaging. ACS Photonics 8, 3261-3271 (2021). doi: 10.1021/acsphotonics.1c01085
[122] Onural, L. Sampling of the diffraction field. Applied Optics 39, 5929-5935 (2000). doi: 10.1364/AO.39.005929
[123] Kelly, D. P. et al. Resolution limits in practical digital holographic systems. Optical Engineering 48, 095801 (2009). doi: 10.1117/1.3212678
[124] Kelly, D. P. et al. Quantifying the 2.5D imaging performance of digital holographic systems. Journal of the European Optical Society 6, 11034 (2011). doi: 10.2971/jeos.2011.11034
[125] Luo, W. et al. Propagation phasor approach for holographic image reconstruction. Scientific Reports 6, 22738 (2016). doi: 10.1038/srep22738
[126] Gao, Y. H., Ya ng, F. & Cao, L. C. Pixel super-resolution phase retrieval for lensless on-chip microscopy via accelerated Wirtinger flow. Cells 11, 1999 (2022). doi: 10.3390/cells11131999
[127] Kreutz-Delgado, K. The complex gradient operator and the CR-calculus. arXiv: 0906.4835 (2009).
[128] Parikh, N. & Boyd, S. Proximal algorithms. Foundations and Trends ? in Optimization 1, 127-239 (2014). doi: 10.1561/2400000003
[129] Nesterov, Y. E. A method for solving the convex programming problem with convergence rate $O(1/k.2)$. Soviet Mathematics Doklady 269, 543-547 (1983).
[130] Beck, A. & Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2, 183-202 (2009). doi: 10.1137/080716542
[131] Beck, A. & Teboulle, M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing 18, 2419-2434 (2009). doi: 10.1109/TIP.2009.2028250
[132] Xu, R. et al. Accelerated Wirtinger flow: a fast algorithm for ptychography. arXiv: 1806.05546 (2018).
[133] Schmidt, M., Le Roux, N. & Bach, F. Convergence rates of inexact proximal-gradient methods for convex optimization. Proceedings of the 24th International Conference on Neural Information Processing Systems. Granada, Spain: Curran Associates Inc., 2011, 1458–1466.
[134] Gao, Y. H. & Cao, L. C. Compressive phase retrieval via constrained complex total variation regularization (CCTV). at https://github.com/THUHoloLab/CCTV-phase-retrieval.
[135] Ye, Q. L., Wang, L. W. & Lun, D. P. K. Towards practical single-shot phase retrieval with physics-driven deep neural network. arXiv: 2208.08604 (2022).
[136] Baek, Y. S. & Park, Y. K. Intensity-based holographic imaging via space-domain KramersɃKronig relations. Nature Photonics 15, 354-360 (2021). doi: 10.1038/s41566-021-00760-8
[137] Zhang, J. W. et al. A review of common-path off-axis digital holography: towards high stable optical instrument manufacturing. Light: Advanced Manufacturing 2, 333-349 (2021).
[138] Gao, Y. H. & Cao, L. C. A complex constrained total variation image denoising algorithm with application to phase retrieval. arXiv: 2109.05496 (2021).