[1] Nugent, K., Paganin, D. & Gureyev, T. A phase odyssey. Physics Today 54, 27-32 (2001).
[2] Guigay, J. P., Langer, M., Boistel, R. & Cloetens, P. Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region. Optics Letters 32, 1617-1619 (2007). doi: 10.1364/OL.32.001617
[3] Falaggis, K., Kozacki, T. & Kujawinska, M. Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function. Optics Letters 39, 30-33 (2014). doi: 10.1364/OL.39.000030
[4] Martinez-Carranza, J., Falaggis, K. & Kozacki, T. Multi-filter transport of intensity equation solver with equalized noise sensitivity. Optics Express 23, 23092-23107 (2015). doi: 10.1364/OE.23.023092
[5] Reed Teague, M. Deterministic phase retrieval: a Green’s function solution. Journal of the Optical Society of America 73, 1434-1441 (1983). doi: 10.1364/JOSA.73.001434
[6] Almoro, P., Pedrini, G. & Osten, W. Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field. Applied Optics 45, 8596-8605 (2006). doi: 10.1364/AO.45.008596
[7] Zalevsky, Z., Mendlovic, D. & Dorsch, R. G. Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain. Optics Letters 21, 842-844 (1996). doi: 10.1364/OL.21.000842
[8] Fienup, J. R. Phase retrieval algorithms: a comparison. Applied Optics 21, 2758-2769 (1982). doi: 10.1364/AO.21.002758
[9] Fienup, J. R. Phase retrieval algorithms: a personal tour [Invited]. Applied Optics 52, 45-56 (2013). doi: 10.1364/AO.52.000045
[10] Falaggis, K., Kozacki, T. & Kujawinska, M. Accelerated single-beam wavefront reconstruction techniques based on relaxation and multiresolution strategies. Optics Letters 38, 1660-1662 (2013). doi: 10.1364/OL.38.001660
[11] Almoro, P. F., Maallo, A. M. S. & Hanson, S. G. Fast-convergent algorithm for speckle-based phase retrieval and a design for dynamic wavefront sensing. Applied Optics 48, 1485-1493 (2009). doi: 10.1364/AO.48.001485
[12] Falaggis, K., Kozacki, T. & Kujawinska, M. Hybrid single-beam reconstruction technique for slow and fast varying wave fields. Optics Letters 40, 2509-2512 (2015). doi: 10.1364/OL.40.002509
[13] Falldorf, C., von Kopylow C. & Bergmann, R. B. Wave field sensing by means of computational shear interferometry. Journal of the Optical Society of America A 30, 1905-1912 (2013).
[14] Falldorf, C., Agour, M. & Bergmann, R. B. Advanced wave field sensing using computational shear interferometry. Proceedings of SPIE 9204, Interferometry XVII. San Diego: SPIE, 2014.
[15] Servín, M., Quiroga, J. A. & Padilla, J. M. Fringe Pattern Analysis for Optical Metrology: Theory, Algorithms, and Applications. (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2014).
[16] Konijnenberg, A. P. et al. Phase retrieval algorithms for lensless imaging using diffractive shearing interferometry. Journal of the Optical Society of America A 37, 914-924 (2020). doi: 10.1364/JOSAA.389791
[17] Blain, P. et al. An in-line shearography setup based on circular polarization gratings. Optics and Lasers in Engineering 51, 1053-1059 (2013). doi: 10.1016/j.optlaseng.2013.03.003
[18] Ch oi, K., Y im, J. & Min, S. W. Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens. Optics Express 26, 16212-16225 (2018). doi: 10.1364/OE.26.016212
[19] Alemán-Castaneda, L. A. et al. Shearing interferometry via geometric phase. Optica 6, 396-399 (2019). doi: 10.1364/OPTICA.6.000396
[20] Millerd, J. E. & Wyant, J. C. Simultaneous phase-shifting Fizeau interferometer. U.S. patent US7057738B2 (2003).
[21] Ne al, R. M. & Wyant, J. C. Polarization phase-shifting point-diffraction interferometer. Applied Optics 45, 3463-3476 (2006). doi: 10.1364/AO.45.003463
[22] Servín, M., Cywiak M. & Dávila A. Lateral shearing interferometry: theoretical limits with practical consequences. Optics Express 15, 17805-17818 (2007). doi: 10.1364/OE.15.017805
[23] Hariharan, P. Optical Interferometry. 2nd edn. (Amsterdam: Elsevier, 2003).
[24] Youla, D. Generalized image restoration by the method of alternating orthogonal projections. IEEE Transactions on Circuits and Systems 25, 694-702 (1978). doi: 10.1109/TCS.1978.1084541
[25] Falldorf, C. Measuring the complex amplitude of wave fields by means of shear interferometry. Journal of the Optical Society of America A 28, 1636-1647 (2011). doi: 10.1364/JOSAA.28.001636
[26] Kozacki, T., Falaggis, K. & Kujawinska, M. Computation of diffracted fields for the case of high numerical aperture using the angular spectrum method. Applied Optics 51, 7080-7088 (2012). doi: 10.1364/AO.51.007080
[27] Falaggis, K., Kozacki, T. & Kujawinska, M. Computation of highly off-axis diffracted fields using the band-limited angular spectrum method with suppressed Gibbs related artifacts. Applied Optics 52, 3288-3297 (2013). doi: 10.1364/AO.52.003288
[28] Guizar-Sicairos, M., Thurman, S. T. & Fienup, J. R. Efficient subpixel image registration algorithms. Optics Letters 33, 156-158 (2008). doi: 10.1364/OL.33.000156