[1] Chopra, R., Wagner, S. K. & Keane, P. A. Optical coherence tomography in the 2020s—outside the eye clinic. Eye https://doi.org/10.1038/s41433-020-01263-6 (2020).
[2] Kim, S. et al. Design and implementation of a low-cost, portable OCT system. Biomed. Opt. Express 9, 1232–1243 (2018). doi: 10.1364/BOE.9.001232
[3] Neuhaus, K. et al. Simultaneous en-face imaging of multiple layers with multiple reference optical coherence tomography. J. Biomed. Opt. 22, 086006 (2017).
[4] Sudkamp, H. et al. In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography. Opt. Lett. 41, 4987–4990 (2016). doi: 10.1364/OL.41.004987
[5] Vabre, L., Dubois, A. & Boccara, A. C. Thermal-light full-field optical coherence tomography. Opt. Lett. 27, 530–532 (2002). doi: 10.1364/OL.27.000530
[6] Smit, M. K. New focusing and dispersive planar component based on an optical phased array. Electron. Lett. 24, 385–386 (1988). doi: 10.1049/el:19880260
[7] Nguyen, V. D. et al. Spectral domain optical coherence tomography imaging with an integrated optics spectrometer. Opt. Lett. 36, 1293–1295 (2011). doi: 10.1364/OL.36.001293
[8] Rank, E. A. et al. Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings. Light. Sci. Appl. 10, 6 (2021). doi: 10.1038/s41377-020-00450-0