| [1] | Gonzalez-Bellido, P. T., Fabian, S. T. & Nordström, K. Target detection in insects: optical, neural and behavioral optimizations. Current opinion in neurobiology 41, 122-128 (2016). doi: 10.1016/j.conb.2016.09.001 |
| [2] | Chen, T.-H., Fardel, R. & Arnold, C. B. Ultrafast z-scanning for high-efficiency laser micro-machining. Light: Science & Applications 7, 17181-17181 (2018). |
| [3] | Kato, J.-i. et al. Multiple-spot parallel processing for laser micronanofabrication. Applied physics letters 86, 044102 (2005). doi: 10.1063/1.1855404 |
| [4] | Yu, H. et al. Three-dimensional direct laser writing of pegda hydrogel microstructures with low threshold power using a green laser beam. Light: Advanced Manufacturing 2, 31-38 (2021). doi: 10.37188/lam.2021.003 |
| [5] | Wu, D. et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light Sci Appl 4, e228 (2015). doi: 10.1038/lsa.2015.1 |
| [6] | Yang, S. et al. Functional biomimetic microlens arrays with integrated pores. Advanced Materials 17, 435-438 (2010). |
| [7] | Yong, J. et al. Nature-inspired superwettability achieved by femtosecond lasers. Ultrafast Science 2022, 9895418 (2022). |
| [8] | Hwang, S. et al. Design of square-shaped beam homogenizer for petawatt-class ti:sapphire amplifier. Optics Express 25, 9511 (2017). doi: 10.1364/OE.25.009511 |
| [9] | Bewersdorf, Pick & Hell. Multifocal multiphoton microscopy. Optics Letters 23, 655-657 (1998). doi: 10.1364/OL.23.000655 |
| [10] | Arai, J., Kawai, H. & Okano, F. Microlens arrays for integral imaging system. Appl Opt 45, 9066-9078 (2006). doi: 10.1364/AO.45.009066 |
| [11] | Tian, Z.-N. et al. Focal varying microlens array. Optics Letters 40, 4222-4225 (2015). doi: 10.1364/OL.40.004222 |
| [12] | Wu, D. et al. High numerical aperture microlens arrays of close packing. Applied Physics Letters 97, 031109-031109 (2010). doi: 10.1063/1.3464979 |
| [13] | Yi, et al. Direct write of microlens array using digital projection photopolymerization. Applied Physics Letters 92, 41109-41109 (2008). doi: 10.1063/1.2838751 |
| [14] | Chan, E. P. & Crosby, A. J. Fabricating microlens arrays by surface wrinkling. Advanced Materials 18, 3238-3242 (2006). doi: 10.1002/adma.200601595 |
| [15] | Zhu, X. et al. Fabrication of high numerical aperture micro-lens array based on drop-on-demand generating of water-based molds. Optics Laser Technology 68, 23-27 (2015). doi: 10.1016/j.optlastec.2014.11.003 |
| [16] | Park, M.-K. et al. Design and fabrication of multifocusing microlens array with different numerical apertures by using thermal reflow method. Journal of the Optical Society of Korea 18, 71-77 (2014). doi: 10.3807/JOSK.2014.18.1.071 |
| [17] | Chen, F. et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecondlaser-enhanced local wet etching method. Optics express 18, 20334-20343 (2010). doi: 10.1364/OE.18.020334 |
| [18] | Liu, X. et al. Dry-etching-assisted femtosecond laser machining. Laser Photonics Reviews 11, 1600115 (2017). doi: 10.1002/lpor.201600115 |
| [19] | Bian, H. et al. Direct fabrication of compoundeye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process. Applied Physics Letters 109, 221109 (2016). doi: 10.1063/1.4971334 |
| [20] | Deng, Z. et al. Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging. Advanced Functional Materials 26, 1995-2001 (2016). doi: 10.1002/adfm.201504941 |
| [21] | Yang, Q. et al. Lens-on-lens microstructures. optics letters 40, 5359-5362 (2015). doi: 10.1364/OL.40.005359 |
| [22] | Cao, X.-W. et al. Single-pulse writing of a concave microlens array. Optics Letters 43, 831-834 (2018). doi: 10.1364/OL.43.000831 |
| [23] | Cao, X.-W. et al. Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array. Applied Optics 57, 9604-9608 (2018). doi: 10.1364/AO.57.009604 |
| [24] | Liu, X.-Q. et al. Etching-assisted femtosecond laser modification of hard materials. Opto-Electronic Advances 2, 09190021 (2019). |
| [25] | Wang, L. et al. Plasmonic nano-printing: largearea nanoscale energy deposition for efficient surface texturing. Light: Science Applications 6, e17112-e17112 (2017). doi: 10.1038/lsa.2017.112 |
| [26] | Cai, M.-Q. et al. Microstructures fabricated by dynamically controlled femtosecond patterned vector optical fields. Optics Letters 41, 1474-1477 (2016). doi: 10.1364/OL.41.001474 |
| [27] | Malinauskas, M. et al. Ultrafast laser processing of materials: from science to industry. Light: Science Applications 5, e16133-e16133 (2016). doi: 10.1038/lsa.2016.133 |
| [28] | Yamaji, M. et al. Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram. Applied Physics Letters 93, 041116 (2008). doi: 10.1063/1.2965451 |
| [29] | Ni, J. et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light: Science Applications 6, e17011-e17011 (2017). doi: 10.1038/lsa.2017.11 |
| [30] | Ding, X. et al. Metasurface holographic image projection based on mathematical properties of fourier transform. PhotoniX 1, 1-12 (2020). doi: 10.1186/s43074-020-00006-w |
| [31] | Bengtsson, J. Kinoform design with an optimalrotation-angle method. Applied optics 33, 6879-6884 (1994). doi: 10.1364/AO.33.006879 |
| [32] | Buividas, R. et al. Nano-groove and 3d fabrication by controlled avalanche using femtosecond laser pulses. Optical Materials Express 3, 1674-1686 (2013). doi: 10.1364/OME.3.001674 |
| [33] | Itoh, K. et al. Ultrafast processes for bulk modification of transparent materials. MRS bulletin 31, 620-625 (2006). doi: 10.1557/mrs2006.159 |
| [34] | Li, Z.-Z. et al. O-fib: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light: Science Applications 9, 1-7 (2020). doi: 10.1038/s41377-019-0231-1 |
| [35] | Kiyama, S. et al. Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates. Journal of Physical Chemistry C 113, 11560-11566 (2009). |
| [36] | Marcinkevičius, A. et al. Femtosecond laser-assisted three-dimensional microfabrication in silica. Optics Letters 26, 277-279 (2001). doi: 10.1364/OL.26.000277 |