[1] |
Kakkava, E. et al. Selective femtosecond laser ablation via two-photon fluorescence imaging through a multimode fiber. Biomedical Optics Express 10, 423-433 (2019). doi: 10.1364/BOE.10.000423 |
[2] |
Turtaev, S. et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light: Science & Applications 7, 92 (2018). |
[3] |
Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics 10, 554-560 (2016). doi: 10.1038/nphoton.2016.121 |
[4] |
Li, J. W. et al. Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use. Light: Science & Applications 9, 124 (2020). |
[5] |
Lorenser, D. et al. Ultrathin side-viewing needle probe for optical coherence tomography. Optics Letters 36, 3894-3896 (2011). doi: 10.1364/OL.36.003894 |
[6] |
Huo, L. et al. Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging. Optics Express 18, 14375-14384 (2010). doi: 10.1364/OE.18.014375 |
[7] |
Wurster, L. M. et al. Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe. Journal of Biophotonics 12, e201800382 (2019). doi: 10.1002/jbio.201800382 |
[8] |
Aljasem, K. et al. Scanning and tunable micro-optics for endoscopic optical coherence tomography. Journal of Microelectromechanical Systems 20, 1462-1472 (2011). doi: 10.1109/JMEMS.2011.2167656 |
[9] |
Burkhardt, A. et al. Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography. Journal of Biophotonics 7, 434-441 (2014). doi: 10.1002/jbio.201200186 |
[10] |
Li, J. N. et al. High speed miniature motorized endoscopic probe for optical frequency domain imaging. Optics Express 20, 24132-24138 (2012). doi: 10.1364/OE.20.024132 |
[11] |
Qiu, Z. & Piyawattanamatha, W. New endoscopic imaging technology based on MEMS sensors and actuators. Micromachines 8, 210 (2017). doi: 10.3390/mi8070210 |
[12] |
Philipp, K. et al. Diffraction-limited axial scanning in thick biological tissue with an aberration-correcting adaptive lens. Scientific Reports 9, 9532 (2019). doi: 10.1038/s41598-019-45993-4 |
[13] |
Rahmani, B. et al. Actor neural networks for the robust control of partially measured nonlinear systems showcased for image propagation through diffuse media. Nature Machine Intelligence 2, 403-410 (2020). doi: 10.1038/s42256-020-0199-9 |
[14] |
Rothe, S. et al. Deep learning for computational mode decomposition in optical fibers. Applied Sciences 10, 1367 (2020). doi: 10.3390/app10041367 |
[15] |
Amitonova, L. V., Mosk, A. P. & Pinkse, P. W. H. Rotational memory effect of a multimode fiber. Optics Express 23, 20569-20575 (2015). doi: 10.1364/OE.23.020569 |
[16] |
Chen, H. et al. Binary amplitude-only image reconstruction through a MMF based on an AE-SNN combined deep learning model. Optics Express 28, 30048-30062 (2020). doi: 10.1364/OE.403316 |
[17] |
Zhu, C. Y. et al. Image reconstruction through a multimode fiber with a simple neural network architecture. Scientific Reports 11, 896 (2021). doi: 10.1038/s41598-020-79646-8 |
[18] |
Caravaca-Aguirre, A. M. et al. Real-time resilient focusing through a bending multimode fiber. Optics Express 21, 12881-12887 (2013). doi: 10.1364/OE.21.012881 |
[19] |
Trägårdh, J. et al. Label-free CARS microscopy through a multimode fiber endoscope. Optics Express 27, 30055-30066 (2019). doi: 10.1364/OE.27.030055 |
[20] |
Deng, S. N. et al. Raman imaging through multimode sapphire fiber. Optics Express 27, 1090-1098 (2019). doi: 10.1364/OE.27.001090 |
[21] |
Haufe, D. et al. Transmission of multiple signals through an optical fiber using wavefront shaping. Journal of Visualized Experiments 55407 (2017). |
[22] |
Büttner, L., Thümmler, M. & Czarske, J. Velocity measurements with structured light transmitted through a multimode optical fiber using digital optical phase conjugation. Optics Express 28, 8064-8075 (2020). doi: 10.1364/OE.386047 |
[23] |
Lee, S. Y. et al. Reciprocity-induced symmetry in the round-trip transmission through complex systems. APL Photonics 5, 106104 (2020). doi: 10.1063/5.0021285 |
[24] |
Gu, R. Y., Mahalati, R. N. & Kahn, J. M. Design of flexible multi-mode fiber endoscope. Optics Express 23, 26905-26918 (2015). doi: 10.1364/OE.23.026905 |
[25] |
Gordon, G. S. D. et al. Characterizing optical fiber transmission matrices using metasurface reflector stacks for lensless imaging without distal access. Physical Review X 9, 041050 (2019). |
[26] |
Osnabrugge, G. et al. Generalized optical memory effect. Optica 4, 886-892 (2017). doi: 10.1364/OPTICA.4.000886 |
[27] |
Kuschmierz, R. et al. Self-calibration of lensless holographic endoscope using programmable guide stars. Optics Letters 43, 2997-3000 (2018). doi: 10.1364/OL.43.002997 |
[28] |
Warren, S. C. et al. Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection. Optics Express 24, 21474-21484 (2016). doi: 10.1364/OE.24.021474 |
[29] |
Weiss, U. & Katz, O. Two-photon lensless micro-endoscopy with in-situ wavefront correction. Optics Express 26, 28808-28817 (2018). doi: 10.1364/OE.26.028808 |
[30] |
Scharf, E. et al. Video-rate lensless endoscope with self-calibration using wavefront shaping. Optics Letters 45, 3629-3632 (2020). doi: 10.1364/OL.394873 |
[31] |
Andresen, E. R. et al. Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle. Optics Letters 38, 609 (2013). doi: 10.1364/OL.38.000609 |
[32] |
Herman, O. et al. Time multiplexed super resolution of multicore fiber endoscope using multimode fiber illumination patterns. Optical Fiber Technology 54, 102122 (2020). doi: 10.1016/j.yofte.2019.102122 |
[33] |
Tsvirkun, V. et al. Flexible lensless endoscope with a conformationally invariant multi-core fiber. Optica 6, 1185-1189 (2019). doi: 10.1364/OPTICA.6.001185 |
[34] |
Davis, J. A. et al. Encoding amplitude information onto phase-only filters. Applied Optics 38, 5004-5013 (1999). doi: 10.1364/AO.38.005004 |
[35] |
Sarkadi, T., Kettinger & Á. Koppa, P. Spatial filters for complex wavefront modulation. Applied Optics 52, 5449-5454 (2013). doi: 10.1364/AO.52.005449 |
[36] |
Häfner, M., Pruss, C. & Osten, W. Laser direct writing. Optik & Photonik 6, 40-43 (2011). |
[37] |
Paz, V. F. et al. Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization. Journal of Laser Applications 24, 042004 (2012). doi: 10.2351/1.4712151 |
[38] |
Toulouse, A. et al. 3D-printed miniature spectrometer for the visible range with a 100 × 100 μm2 footprint. Light: Advanced Manufacturing 2, 20-30 (2021). |
[39] |
Sartison, M. et al. 3D printed micro-optics for quantum technology: optimised coupling of single quantum dot emission into a single-mode fibre. Light: Advanced Manufacturing 2, 6 (2021). |
[40] |
Sivankutty, S. et al. Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber. Optics Letters 41, 3531-3534 (2016). doi: 10.1364/OL.41.003531 |
[41] |
Sivankutty, S. et al. Nonlinear imaging through a Fermat’s golden spiral multicore fiber. Optics Letters 43, 3638-3641 (2018). doi: 10.1364/OL.43.003638 |
[42] |
Yang, X., Pu, Y. & Psaltis, D. Imaging blood cells through scattering biological tissue using speckle scanning microscopy. Optics Express 22, 3405-3413 (2014). doi: 10.1364/OE.22.003405 |
[43] |
Porat, A. et al. Widefield lensless imaging through a fiber bundle via speckle correlations. Optics Express 24, 16835-16855 (2016). doi: 10.1364/OE.24.016835 |
[44] |
Singh, A. K. et al. Scatter-plate microscope for lensless microscopy with diffraction limited resolution. Scientific Reports 7, 10687 (2017). doi: 10.1038/s41598-017-10767-3 |
[45] |
Berto, P., Rigneault, H. & Guillon, M. Wavefront sensing with a thin diffuser. Optics Letters 42, 5117-5120 (2017). doi: 10.1364/OL.42.005117 |
[46] |
Antipa, N. et al. DiffuserCam: lensless single-exposure 3D imaging. Optica 5, 1-9 (2018). doi: 10.1364/OPTICA.5.000001 |
[47] |
Wu, J. C. et al. Single-shot lensless imaging with fresnel zone aperture and incoherent illumination. Light: Science & Applications 9, 53 (2020). |
[48] |
Ludwig, S. et al. Scatter-plate microscopy with spatially coherent illumination and temporal scatter modulation. Optics Express 29, 4530-4546 (2021). doi: 10.1364/OE.412047 |
[49] |
Borhani, N. et al. Learning to see through multimode fibers. Optica 5, 960-966 (2018). doi: 10.1364/OPTICA.5.000960 |
[50] |
Li, S. et al. Imaging through glass diffusers using densely connected convolutional networks. Optica 5, 803-813 (2018). doi: 10.1364/OPTICA.5.000803 |
[51] |
Kakkava, E. et al. Imaging through multimode fibers using deep learning: the effects of intensity versus holographic recording of the speckle pattern. Optical Fiber Technology 52, 101985 (2019). doi: 10.1016/j.yofte.2019.101985 |
[52] |
Zhao, J. et al. Deep learning imaging through fully-flexible glass-air disordered fiber. ACS Photonics 5, 3930-3935 (2018). doi: 10.1021/acsphotonics.8b00832 |
[53] |
Wu, J. C., Cao, L. C. & Barbastathis, G. DNN-FZA camera: a deep learning approach toward broadband FZA lensless imaging. Optics Letters 46, 130-133 (2021). doi: 10.1364/OL.411228 |
[54] |
Zhang, H., Kuschmierz, R. & Czarske, J. Miniaturized interferometric 3-D shape sensor using coherent fiber bundles. Optics and Lasers in Engineering 107, 364-369 (2018). doi: 10.1016/j.optlaseng.2018.04.011 |
[55] |
Hu, X. W. et al. Robust imaging-free object recognition through anderson localizing optical fiber. Journal of Lightwave Technology 39, 920-926 (2021). doi: 10.1109/JLT.2020.3029416 |
[56] |
Sun, J. W. et al. Rapid computational cell-rotation around arbitrary axes in 3D with multi-core fiber. Biomedical Optics Express 12, 3423-3437 (2021). doi: 10.1364/BOE.423035 |
[57] |
Sun, J. W., Koukourakis, N. & Czarske, J. W. Complex wavefront shaping through a multi-core fiber. Applied Sciences 11, 3949 (2021). doi: 10.3390/app11093949 |
[58] |
Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Optics Letters 32, 2309-2311 (2007). doi: 10.1364/OL.32.002309 |
[59] |
Ronneberger, O. Fischer, P & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (2015). |