[1] Gerchberg RW, Saxton WO. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972; 35: 237.
[2] Fienup JR. Reconstruction of an object from the modulus of its Fourier transform. Opt Lett 1978; 3: 27–29. doi: 10.1364/OL.3.000027
[3] Zalevsky Z, Mendlovic D, Dorsch RG. Gerchberg–Saxton algorithm applied in the fractional Fourier or the Fresnel domain. Opt Lett 1996; 21: 842–844. doi: 10.1364/OL.21.000842
[4] Elser V. Solution of the crystallographic phase problem by iterated projections. Acta Crystallogr A 2003; 59: 201–209. doi: 10.1107/S0108767303002812
[5] Luke DR. Relaxed averaged alternating reflections for diffraction imaging. Inverse Probl 2005; 21: 37–50. doi: 10.1088/0266-5611/21/1/004
[6] Latychevskaia T, Fink HW. Solution to the twin image problem in holography. Phys Rev Lett 2007; 98: 233901. doi: 10.1103/PhysRevLett.98.233901
[7] Marchesini S. Invited Article: a unified evaluation of iterative projection algorithms for phase retrieval. Rev Sci Instrum 2007; 78: 011301. doi: 10.1063/1.2403783
[8] Quiney HM, Williams GJ, Nugent KA. Non-iterative solution of the phase retrieval problem using a single diffraction measurement. Opt Express 2008; 16: 6896–6903. doi: 10.1364/OE.16.006896
[9] Brady DJ, Choi K, Marks DL, Horisaki R, Lim S. Compressive holography. Opt Express 2009; 17: 13040–13049. doi: 10.1364/OE.17.013040
[10] Szameit A, Shechtman Y, Osherovich E, Bullkich E, Sidorenko P et al. Sparsity-based single-shot subwavelength coherent diffractive imaging. Nat Mater 2012; 11: 455–459. doi: 10.1038/nmat3289
[11] Candès EJ, Eldar YC, Strohmer T, Voroninski V. Phase retrieval via matrix completion. SIAM J Imaging Sci 2013; 6: 199–225. doi: 10.1137/110848074
[12] Rodriguez JA, Xu R, Chen CC, Zou YF, Miao JW. Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. J Appl Crystallogr 2013; 46: 312–318. doi: 10.1107/S0021889813002471
[13] Rivenson Y, Aviv (Shalev) M, Weiss A, Panet H, Zalevsky Z. Digital resampling diversity sparsity constrained-wavefield reconstruction using single-magnitude image. Opt Lett 2015; 40: 1842–1845. doi: 10.1364/OL.40.001842
[14] Gabor D. A new microscopic principle. Nature 1948; 161: 777–778. doi: 10.1038/161777a0
[15] Faulkner HML, Rodenburg JM. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Phys Rev Lett 2004; 93: 023903. doi: 10.1103/PhysRevLett.93.023903
[16] Dierolf M, Menzel A, Thibault P, Schneider P, Kewish CM et al. Ptychographic X-ray computed tomography at the nanoscale. Nature 2010; 467: 436–439. doi: 10.1038/nature09419
[17] Zheng GA, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat Photonics 2013; 7: 739–745. doi: 10.1038/nphoton.2013.187
[18] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica 2015; 2: 104–111. doi: 10.1364/OPTICA.2.000104
[19] Misell DL. An examination of an iterative method for the solution of the phase problem in optics and electron optics: I. Test calculations. J Phys D Appl Phys 1973; 6: 2200–2216.
[20] Teague MR. Deterministic phase retrieval: a Green's function solution. J Opt Soc Am 1983; 73: 1434–1441. doi: 10.1364/JOSA.73.001434
[21] Paganin D, Barty A, McMahon PJ, Nugent KA. Quantitative phase-amplitude microscopy. Ⅲ. The effects of noise. J Microsc 2004; 214: 51–61. doi: 10.1111/j.0022-2720.2004.01295.x
[22] Greenbaum A, Ozcan A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy. Opt Express 2012; 20: 3129–3143. doi: 10.1364/OE.20.003129
[23] Rivenson Y, Wu Y, Wang H, Zhang Y, Feizi A et al. Sparsity-based multi-height phase recovery in holographic microscopy. Sci Rep 2016; 6: 37862. doi: 10.1038/srep37862
[24] Wang H, Göröcs Z, Luo W, Zhang Y, Rivenson Y et al. Computational out-of-focus imaging increases the space–bandwidth product in lensbased coherent microscopy. Optica 2016; 3: 1422–1429. doi: 10.1364/OPTICA.3.001422
[25] Ferraro P, Miccio L, Grilli S, Paturzo M, De Nicola S et al. Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography. Opt Express 2007; 15: 14591–14600. doi: 10.1364/OE.15.014591
[26] Luo W, Zhang YB, Feizi A, Göröcs Z, Ozcan A. Pixel super-resolution using wavelength scanning. Light Sci Appl 2016; 5: e16060 doi: 10.1038/lsa.2016.60.
[27] Gonsalves RA. Phase retrieval and diversity in adaptive optics. Opt Eng 1982; 21: 215829. doi: 10.1117/12.7972989
[28] Eisebitt S, Lüning J, Schlotter WF, Lörgen M, Hellwig O et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 2004; 432: 885–888. doi: 10.1038/nature03139
[29] Rosen J, Brooker G. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat Photonics 2008; 2: 190–195. doi: 10.1038/nphoton.2007.300
[30] Marchesini S, Boutet S, Sakdinawat AE, Bogan MJ, Bajt S et al. Massively parallel X-ray holography. Nat Photonics 2008; 2: 560–563. doi: 10.1038/nphoton.2008.154
[31] Popescu G, Ikeda T, Dasari RR, Feld MS. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt Lett 2006; 31: 775–777. doi: 10.1364/OL.31.000775
[32] Coppola G, Di Caprio G, Gioffré M, Puglisi R, Balduzzi D et al. Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction. Opt Lett 2010; 35: 3390–3392. doi: 10.1364/OL.35.003390
[33] Wang Z, Millet L, Mir M, Ding HF, Unarunotai S et al. Spatial light interference microscopy (SLIM). Opt Express 2011; 19: 1016–1026. doi: 10.1364/OE.19.001016
[34] Rivenson Y, Katz B, Kelner R, Rosen J. Single channel in-line multimodal digital holography. Opt Lett 2013; 38: 4719–4722. doi: 10.1364/OL.38.004719
[35] Shechtman Y, Eldar YC, Cohen O, Chapman HN, Miao JW et al. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process Mag 2015; 32: 87–109. doi: 10.1109/MSP.2014.2352673
[36] Kelner R, Rosen J. Methods of single-channel digital holography for three-dimensional imaging. IEEE Trans Ind Inform 2016; 12: 220–230.
[37] Zuo JM, Vartanyants I, Gao M, Zhang R, Nagahara LA. Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science 2003; 300: 1419–1421. doi: 10.1126/science.1083887
[38] Song CY, Jiang HD, Mancuso A, Amirbekian B, Peng L et al. Quantitative imaging of single, unstained viruses with coherent X rays. Phys Rev Lett 2008; 101: 158101. doi: 10.1103/PhysRevLett.101.158101
[39] Miao JW, Ishikawa T, Shen Q, Earnest T. Extending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. Annu Rev Phys Chem 2008; 59: 387–410. doi: 10.1146/annurev.physchem.59.032607.093642
[40] Loh ND, Hampton CY, Martin AV, Starodub D, Sierra RG et al. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature 2012; 486: 513–517. doi: 10.1038/nature11222
[41] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436–444.
[42] Schmidhuber J. Deep learning in neural networks: An overview. Neural Netw 2015; 61: 85–117. doi: 10.1016/j.neunet.2014.09.003
[43] Dong C, Loy CC, He KM, Tang XO. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 2016; 38: 295–307. doi: 10.1109/TPAMI.2015.2439281
[44] Rivenson Y, Gorocs Z, Gunaydin H, Zhang YB, Wang HD et al. Deep learning microscopy. Optica 2017; 4: 1437–1443.
[45] Jin KH, McCann MT, Froustey E, Unser M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process 2017; 26: 4509–4522. doi: 10.1109/TIP.2017.2713099
[46] Wang SS, Su ZH, Ying L, Peng X, Zhu S et al. Accelerating magnetic resonance imaging via deep learning. Proceedings of the 13th International Symposium on Biomedical Imaging (ISBI); 13-16 April 2016; Prague, Czech Republic. IEEE: Prague, Czech Republic 2016 doi: 10.1109/ISBI.2016.7493320.
[47] Antholzer S, Haltmeier M, Schwab J. Deep learning for photoacoustic tomography from sparse data. arXiv: 1704.04587, 2017.
[48] Jo Y, Park S, Jung J, Yoon J, Joo H et al. Holographic deep learning for rapid optical screening of anthrax spores. Sci Adv 2017; 3: e1700606. doi: 10.1126/sciadv.1700606
[49] Sinha A, Lee J, Li S, Barbastathis G. Lensless computational imaging through deep learning. arXiv: 1702.08516, 2017.
[50] Bartels M, Krenkel M, Haber J, Wilke RN, Salditt T. X-ray holographic imaging of hydrated biological cells in solution. Phys Rev Lett 2015; 114: 048103. doi: 10.1103/PhysRevLett.114.048103
[51] McNulty I, Kirz J, Jacobsen C, Anderson EH, Howells MR et al. High-resolution imaging by Fourier transform X-ray holography. Science 1992; 256: 1009–1012. doi: 10.1126/science.256.5059.1009
[52] Greenbaum A, Zhang YB, Feizi A, Chung PL, Luo W et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci Transl Med 2014; 6: 267ra175–267ra175. doi: 10.1126/scitranslmed.3009850
[53] Nowlan SJ, Hinton GE. Simplifying neural networks by soft weight-sharing. Neural Comput 1992; 4: 473–493. doi: 10.1162/neco.1992.4.4.473
[54] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004; 13: 600–612. doi: 10.1109/TIP.2003.819861
[55] Lohmann A. Optische einseitenbandübertragung angewandt auf das Gabor-Mikroskop. Opt Acta 1956; 3: 97–99. doi: 10.1080/713823636
[56] Leith EN, Upatnieks J. Reconstructed wavefronts and communication theory. J Opt Soc Am 1962; 52: 1123–1130. doi: 10.1364/JOSA.52.001123
[57] Goodman JW. Introduction to Fourier Optics. 3rd edn.Roberts and Company Publishers: Greenwood Village, Colorado. 2005.
[58] cuFFT. NVIDIA Developer 2012. Available at https://developer.nvidia.com/cufft (accessed on 9th April 2017) (The content in the link is not NVIDIA Developer).
[59] Thrust-Parallel Algorithms Library. Available at https://thrust.github.io/ (accessed and 9th April 2017) (The content in the link is not NVIDIA Developer).