[1] |
Kuznetsov, A. I. et al. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016). doi: 10.1126/science.aag2472 |
[2] |
Alaee, R., Rockstuhl, C. & Fernandez-Corbaton, I. Exact multipolar decompositions with applications in nanophotonics. Adv. Opt. Mater. 7, 1800783 (2019). doi: 10.1002/adom.201800783 |
[3] |
Miroshnichenko, A. E. et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015). doi: 10.1038/ncomms9069 |
[4] |
Wang, R. & Dal Negro, L. Engineering non-radiative anapole modes for broadband absorption enhancement of light. Opt. Express 24, 19048–19062 (2016). doi: 10.1364/OE.24.019048 |
[5] |
Wei, L. et al. Excitation of the radiationless anapole mode. Optica 3, 799–802 (2016). doi: 10.1364/OPTICA.3.000799 |
[6] |
Luk'yanchuk, B. et al. Hybrid anapole modes of high-index dielectric nanoparticles. Phys. Rev. A 95, 063820 (2017). doi: 10.1103/PhysRevA.95.063820 |
[7] |
Wu, P. C. et al. Optical anapole metamaterial. ACS Nano 12, 1920–1927 (2018). doi: 10.1021/acsnano.7b08828 |
[8] |
Li, S. Q. & Crozier, K. B. Origin of the anapole condition as revealed by a simple expansion beyond the toroidal multipole. Phys. Rev. B 97, 245423 (2018). doi: 10.1103/PhysRevB.97.245423 |
[9] |
Monticone, F. et al. Can a nonradiating mode be externally excited? Nonscattering states versus embedded eigenstates. ACS Photon. 6, 3108–3114 (2019). doi: 10.1021/acsphotonics.9b01104 |
[10] |
Baryshnikova, K. V. et al. Optical anapoles: concepts and applications. Adv. Opt. Mater. 7, 1801350 (2019). doi: 10.1002/adom.201801350 |
[11] |
Kerker, M., Wang, D. S. & Giles, C. L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983). doi: 10.1364/JOSA.73.000765 |
[12] |
Rybin, M. V. et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett. 119, 243901 (2017). doi: 10.1103/PhysRevLett.119.243901 |
[13] |
Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006). doi: 10.1126/science.1125907 |
[14] |
Luk'yanchuk, B. et al. Suppression of scattering for small dielectric particles: anapole mode and invisibility. Philos. Trans. Ser. A, Math. Phys. Eng. Sci. 375, 20160069 (2017). doi: 10.1098/rsta.2016.0069 |
[15] |
Yang, Y. Q., Zenin, V. A. & Bozhevolnyi, S. I. Anapole-assisted strong field enhancement in individual all-dielectric nanostructures. ACS Photon. 5, 1960–1966 (2018). doi: 10.1021/acsphotonics.7b01440 |
[16] |
Grinblat, G. et al. Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk. ACS Nano 11, 953–960 (2017). doi: 10.1021/acsnano.6b07568 |
[17] |
Grinblat, G. et al. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett. 16, 4635–4640 (2016). doi: 10.1021/acs.nanolett.6b01958 |
[18] |
Timofeeva, M. et al. Anapoles in free-standing Ⅲ-Ⅴ nanodisks enhancing second-harmonic generation. Nano Lett. 18, 3695–3702 (2018). doi: 10.1021/acs.nanolett.8b00830 |
[19] |
Baranov, D. G. et al. Anapole-enhanced intrinsic Raman scattering from silicon nanodisks. ACS Photon. 5, 2730–2736 (2018). doi: 10.1021/acsphotonics.8b00480 |
[20] |
Sohler, W. & De La Rue, R. Integrated optics–new material platforms, devices and applications. Laser Photon. Rev. 6, A21–A22 (2012). doi: 10.1002/lpor.201200507 |
[21] |
Soltani, M., Yegnanarayanan, S. & Adibi, A. Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics. Optics Exp. 15, 4694–4704 (2007). doi: 10.1364/OE.15.004694 |
[22] |
Rodríguez-Fortuño, F. J. et al. Resolving light handedness with an on-chip silicon microdisk. ACS Photon. 1, 762–767 (2014). doi: 10.1021/ph500084b |
[23] |
Martínez, A. et al. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett. 10, 1506–1511 (2010). doi: 10.1021/nl9041017 |
[24] |
Borghi, M. et al. Nonlinear silicon photonics. J. Opt. 19, 093002 (2017). doi: 10.1088/2040-8986/aa7a6d |
[25] |
Colom, R. et al. Enhanced four-wave mixing in doubly resonant Si nanoresonators. ACS Photon. 6, 1295–1301 (2019). doi: 10.1021/acsphotonics.9b00442 |
[26] |
Bobylev, D. A., Smirnova, D. A. & Gorlach, M. A. Nonlocal response of Mie-resonant dielectric particles. Phys. Rev. B 102, 115110 (2020). doi: 10.1103/PhysRevB.102.115110 |
[27] |
Patoux, A. et al. Polarizabilities of complex individual dielectric or plasmonic nanostructures. Phys. Rev. B 101, 235418 (2020). doi: 10.1103/PhysRevB.101.235418 |
[28] |
Davis, T. J., Vernon, K. C. & Gómez, D. E. Effect of retardation on localized surface plasmon resonances in a metallic nanorod. Opt. Exp. 17, 23655–23663 (2009). doi: 10.1364/OE.17.023655 |
[29] |
Yu, R. W., Liz-Marzán, L. M. & De Abajo, F. J. G. Universal analytical modeling of plasmonic nanoparticles. Chem. Soc. Rev. 46, 6710–6724 (2017). doi: 10.1039/C6CS00919K |
[30] |
Espinosa-Soria, A., Griol, A. & Martínez, A. Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps. Opt. Exp. 24, 9592–9601 (2016). doi: 10.1364/OE.24.009592 |
[31] |
Espinosa-Soria, A. et al. Coherent control of a plasmonic nanoantenna integrated on a silicon chip. ACS Photon. 5, 2712–2717 (2018). doi: 10.1021/acsphotonics.8b00447 |
[32] |
Gongora, J. S. T. et al. Anapole nanolasers for mode-locking and ultrafast pulse generation. Nat. Commun. 8, 15535 (2017). doi: 10.1038/ncomms15535 |
[33] |
Novotny, L. & Hecht, B. Principles of Nano-Optics. (Cambridge University Press, Cambridge, 2006). |
[34] |
Espinosa-Soria, A. & Martínez, A. Transverse spin and spin-orbit coupling in silicon waveguides. IEEE Photon. Technol. Lett. 28, 1561–1564 (2016). doi: 10.1109/LPT.2016.2553841 |
[35] |
Cai, X. L. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012). doi: 10.1126/science.1226528 |
[36] |
Burresi, M. et al. Observation of polarization singularities at the nanoscale. Phys. Rev. Lett. 102, 033902 (2009). doi: 10.1103/PhysRevLett.102.033902 |
[37] |
Le Feber, B. et al. Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat. Photon. 8, 43–46 (2014). doi: 10.1038/nphoton.2013.323 |
[38] |
Burresi, M. et al. Magnetic light-matter interactions in a photonic crystal nanocavity. Phys. Rev. Lett. 105, 123901 (2010). doi: 10.1103/PhysRevLett.105.123901 |
[39] |
Vignolini, S. et al. Magnetic imaging in photonic crystal microcavities. Phys. Rev. Lett. 105, 123902 (2010). doi: 10.1103/PhysRevLett.105.123902 |
[40] |
Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020). doi: 10.1126/science.aaz3985 |
[41] |
Karabchevsky, A. et al. On-chip nanophotonics and future challenges. Nanophotonics 9, 3733–3753 (2020). doi: 10.1515/nanoph-2020-0204 |