[1] |
Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014). doi: 10.1038/nnano.2014.215 |
[2] |
Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010). doi: 10.1038/nphoton.2010.186 |
[3] |
Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013). doi: 10.1038/ncomms2987 |
[4] |
Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013). doi: 10.1038/nphys2564 |
[5] |
Plötzing, T. et al. Experimental verification of carrier multiplication in graphene. Nano Lett. 14, 5371–5375 (2014). doi: 10.1021/nl502114w |
[6] |
Mueller, T., Xia, F., Freitag, M., Tsang, J. & Avouris, P. Role of contacts in graphene transistors: a scanning photocurrent study. Phys. Rev. B 79, 245430 (2009). doi: 10.1103/PhysRevB.79.245430 |
[7] |
Chitara, B., Panchakarla, L. S., Krupanidhi, S. B. & Rao, C. N. R. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater. 23, 5419–5424 (2011). doi: 10.1002/adma.201101414 |
[8] |
Son, J. G. et al. Sub-10 nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography. Adv. Mater. 25, 4723–4728 (2013). doi: 10.1002/adma.201300813 |
[9] |
Wei, D. C. et al. Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes. Nat. Commun. 4, 1374 (2013). doi: 10.1038/ncomms2366 |
[10] |
Zhang, B. Y. Z. et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013). doi: 10.1038/ncomms2830 |
[11] |
Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012). doi: 10.1038/nnano.2012.60 |
[12] |
Sun, Z. H. et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24, 5878–5883 (2012). doi: 10.1002/adma.201202220 |
[13] |
Guo, W. H. et al. Oxygen-assisted charge transfer between ZnO quantum dots and graphene. Small 9, 3031–3036 (2013). doi: 10.1002/smll.201202855 |
[14] |
Nikitskiy, I. et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor. Nat. Commun. 7, 11954 (2016). doi: 10.1038/ncomms11954 |
[15] |
Liu, C. H., Chang, Y. C., Norris, T. B. & Zhong, Z. H. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9, 273–278 (2014). doi: 10.1038/nnano.2014.31 |
[16] |
Gan, X. T. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7, 883–887 (2013). doi: 10.1038/nphoton.2013.253 |
[17] |
Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7, 892–896 (2013). doi: 10.1038/nphoton.2013.240 |
[18] |
Wang, X. M., Cheng, Z. Z., Xu, K., Tsang, H. K. & Xu, J. B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 7, 888–891 (2013). doi: 10.1038/nphoton.2013.241 |
[19] |
Schall, D. et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photonics 1, 781–784 (2014). doi: 10.1021/ph5001605 |
[20] |
Echtermeyer, T. J. et al. Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2, 458 (2011). doi: 10.1038/ncomms1464 |
[21] |
Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nat. Photonics 6, 749–758 (2012). doi: 10.1038/nphoton.2012.262 |
[22] |
Freitag, M. et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 4, 1951 (2013). doi: 10.1038/ncomms2951 |
[23] |
Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012). doi: 10.1021/nl204512x |
[24] |
Engel, M. et al. Light-matter interaction in a microcavity-controlled graphene transistor. Nat. Commun. 3, 906 (2012). doi: 10.1038/ncomms1911 |
[25] |
Gan, X. T. et al. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett. 12, 5626–5631 (2012). doi: 10.1021/nl302746n |
[26] |
Liu, Y. et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2, 579 (2011). doi: 10.1038/ncomms1589 |
[27] |
Shiue, R. J. et al. Enhanced photodetection in graphene-integrated photonic crystal cavity. Appl. Phys. Lett. 103, 241109 (2013). doi: 10.1063/1.4839235 |
[28] |
Fang, Z. Y. et al. Graphene–antenna sandwich photodetector. Nano Lett. 12, 3808–3813 (2012). doi: 10.1021/nl301774e |
[29] |
Yao, Y. et al. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Lett. 14, 3749–3754 (2014). doi: 10.1021/nl500602n |
[30] |
Chakraborty, C. et al. Optical antenna enhanced graphene photodetector. Appl. Phys. Lett. 105, 241114 (2014). doi: 10.1063/1.4904800 |
[31] |
Echtermeyer, T. J. et al. Surface plasmon polariton graphene photodetectors. Nano Lett. 16, 8–20 (2015). doi: 10.1021/acs.nanolett.5b02051 |
[32] |
Fang, J. R. et al. Enhanced graphene photodetector with fractal metasurface. Nano Lett. 17, 57–62 (2016). doi: 10.1021/acs.nanolett.6b03202 |
[33] |
Mak, K. F., Ju, L., Wang, F. & Heinz, T. F. Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 152, 1341–1349 (2012). doi: 10.1016/j.ssc.2012.04.064 |
[34] |
Kang, C. G. et al. Intrinsic photocurrent characteristics of graphene photodetectors passivated with Al2O3. Opt. Express 21, 23391–23400 (2013). doi: 10.1364/OE.21.023391 |
[35] |
Xia, F. N. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009). doi: 10.1021/nl8033812 |
[36] |
Banszerus, L. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015). doi: 10.1126/sciadv.1500222 |
[37] |
Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008). doi: 10.1016/j.ssc.2008.02.024 |
[38] |
Hirai, H., Tsuchiya, H., Kamakura, Y., Mori, N. & Ogawa, M. Electron mobility calculation for graphene on substrates. J. Appl. Phys. 116, 083703 (2014). doi: 10.1063/1.4893650 |
[39] |
Hamamatsu. Infrared detectors. http://www.hamamatsu.com/us/en/product/category/3100/4007/index.html. |
[40] |
Thorlabs. Infrared detectors. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6479. |
[41] |
An, X. H., Liu, F. Z., Jung, Y. J. & Kar, S. Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 13, 909–916 (2013). doi: 10.1021/nl303682j |
[42] |
Xia, F. N., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009). doi: 10.1038/nnano.2009.292 |
[43] |
Mueller, T., Xia, F. N. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010). doi: 10.1038/nphoton.2010.40 |