[1] Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V et al. Ultrafast laser processing of materials: from science to industry. Light Sci Appl 2016; 5: e16133 doi: 10.1038/lsa.2016.133.
[2] Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci Appl 2014; 3: e149 doi: 10.1038/lsa.2014.30.
[3] Gamaly EG. Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications. Boca Raton: CRC Press. 2011.
[4] Levis RJ, Menkir GM, Rabitz H. Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 2001; 292: 709–713. doi: 10.1126/science.1059133
[5] Rezaei S, Li JZ, Herman PR. Burst train generator of high energy femtosecond laser pulses for driving heat accumulation effect during micromachining. Opt Lett 2015; 40: 2064–2067. doi: 10.1364/OL.40.002064
[6] Gattass RR, Mazur E. Femtosecond laser micromachining in transparent materials. Nat Photon 2008; 2: 219–225. doi: 10.1038/nphoton.2008.47
[7] Jiang L, Tsai HL. Repeatable nanostructures in dielectrics by femtosecond laser pulse trains. Appl Phys Lett 2005; 87: 151104. doi: 10.1063/1.2093935
[8] Han S, Hong S, Ham J, Yeo J, Lee J et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv Mater 2014; 26: 5808–5814. doi: 10.1002/adma.201400474
[9] Fang RR, Vorobyev A, Guo CL. Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals. Light Sci Appl 2017; 6: e16256 doi: 10.1038/lsa.2016.256.
[10] Fan PX, Bai BF, Long JY, Jiang DF, Jin GF et al. Broadband high-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface. Nano Lett 2015; 15: 5988–5994. doi: 10.1021/acs.nanolett.5b02141
[11] Liu XQ, Yu L, Chen QD, Sun HB. Mask-free construction of three-dimensional silicon structures by dry etching assisted gray-scale femtosecond laser direct writing. Appl Phys Lett 2017; 110: 091602. doi: 10.1063/1.4977562
[12] Choi I, Jeong HY, Shin H, Kang G, Byun M et al. Laser-induced phase separation of silicon carbide. Nat Commun 2016; 7: 13562. doi: 10.1038/ncomms13562
[13] Poumellec B, Lancry M, Desmarchelier R, Hervé E, Bourguignon B. Parity violation in chiral structure creation under femtosecond laser irradiation in silica glass? Light Sci Appl 2016; 5: e16178. doi: 10.1038/lsa.2016.178
[14] Chen YC, Salter PS, Knauer S, Weng LY, Frangeskou AC et al. Laser writing of coherent colour centres in diamond. Nat Photon 2016; 11: 77–80. doi: 10.1038/nphoton.2016.234
[15] Wu D, Xu J, Niu LG, Wu SZ, Midorikawa K et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light Sci Appl 2015; 4: e228. doi: 10.1038/lsa.2015.1
[16] Li DW, Zhou YS, Huang X, Jiang L, Silvain JF et al. In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene. Nanoscale 2015; 7: 3651–3659. doi: 10.1039/C4NR07078J
[17] Chen XD, Xin W, Jiang WS, Liu ZB, Chen YS et al. High-precision twist-controlled bilayer and trilayer graphene. Adv Mater 2016; 28: 2563–2570. doi: 10.1002/adma.201505129
[18] Coleman C, Erasmus R, Bhattacharyya S. Nanoscale deformations in graphene by laser annealing. Appl Phys Lett 2016; 109: 253102. doi: 10.1063/1.4972845
[19] Russo P, Liang R, Jabari E, Marzbanrad E, Toyserkani E et al. Single-step synthesis of graphene quantum dots by femtosecond laser ablation of graphene oxide dispersions. Nanoscale 2016; 8: 8863–8877. doi: 10.1039/C6NR01148A
[20] Kwon HJ, Chung S, Jang J, Grigoropoulos CP. Laser direct writing and inkjet printing for a sub-2 μm channel length MoS2 transistor with high-resolution electrodes. Nanotechnology 2016; 27: 405301. doi: 10.1088/0957-4484/27/40/405301
[21] Dumitru G, Romano V, Weber HP, Sentis M, Marine W. Femtosecond ablation of ultrahard materials. Appl Phys A 2002; 74: 729–739. doi: 10.1007/s003390101183
[22] Sun YL, Dong WF, Niu LG, Jiang T, Liu DX et al. Protein-based soft micro-optics fabricated by femtosecond laser direct writing. Light Sci Appl 2014; 3: e129 doi: 10.1038/lsa.2014.10.
[23] He H, Li SY, Wang SY, Hu ML, Cao YJ et al. Manipulation of cellular light from green fluorescent protein by a femtosecond laser. Nat Photon 2012; 6: 651–656. doi: 10.1038/nphoton.2012.207
[24] Park H, Wang X, Nie S, Clinite R, Cao J. Mechanism of coherent acoustic phonon generation under nonequilibrium conditions. Phys Rev B 2005; 72: 100301. doi: 10.1103/PhysRevB.72.100301
[25] Juodkazis S, Nishimura K, Tanaka S, Misawa H, Gamaly EG et al. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures. Phys Rev Lett 2006; 96: 166101. doi: 10.1103/PhysRevLett.96.166101
[26] Sundaram SK, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat Mater 2002; 1: 217–224. doi: 10.1038/nmat767
[27] Sakakura M, Terazima M. Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass. Phys Rev B 2005; 71: 024113. doi: 10.1103/PhysRevB.71.024113
[28] Zhang N, Zhu XN, Yang JJ, Wang XL, Wang MW. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum. Phys Rev Lett 2007; 99: 167602. doi: 10.1103/PhysRevLett.99.167602
[29] Hu HF, Wang XL, Zhai HC, Zhang N, Wang P. Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation. Appl Phys Lett 2010; 97: 061117. doi: 10.1063/1.3479919
[30] Zhao X, Shin YC. Coulomb explosion and early plasma generation during femtosecond laser ablation of silicon at high laser fluence. J Phys D Appl Phys 2013; 46: 335501. doi: 10.1088/0022-3727/46/33/335501
[31] Domke M, Rapp S, Schmidt M, Huber HP. Ultrafast pump-probe microscopy with high temporal dynamic range. Opt Express 2012; 20: 10330–10338. doi: 10.1364/OE.20.010330
[32] Goulielmakis E, Loh ZH, Wirth A, Santra R, Rohringer N et al. Real-time observation of valence electron motion. Nature 2010; 466: 739–743. doi: 10.1038/nature09212
[33] Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 2009; 460: 972–977. doi: 10.1038/nature08253
[34] Improta R, Santoro F, Blancafort L. Quantum mechanical studies on the photophysics and the photochemistry of nucleic acids and nucleobases. Chem Rev 2016; 116: 3540–3593. doi: 10.1021/acs.chemrev.5b00444
[35] Zhang WK, Markiewicz BN, Doerksen RS, Smith AB III, Gai F. C≡N stretching vibration of 5-cyanotryptophan as an infrared probe of protein local environment: what determines its frequency? Phys Chem Chem Phys 2016; 18: 7027–7034. doi: 10.1039/C5CP04413H
[36] Auböck G, Chergui M. Sub-50-fs photoinduced spin crossover in [Fe(bpy)3]2+. Nat Chem 2015; 7: 629–633. doi: 10.1038/nchem.2305
[37] Kraus PM, Tolstikhin OI, Baykusheva D, Rupenyan A, Schneider J et al. Observation of laser-induced electronic structure in oriented polyatomic molecules. Nat Commun 2015; 6: 7039. doi: 10.1038/ncomms8039
[38] Wang HN, Zhang CJ, Rana F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett 2014; 15: 339–345. doi: 10.1021/nl503636c
[39] Pogna EAA, Marsili M, De Fazio D, Dal Conte S, Manzoni C et al. Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2. ACS Nano 2016; 10: 1182–1188. doi: 10.1021/acsnano.5b06488
[40] Hong XP, Kim J, Shi SF, Zhang Y, Jin CH et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat Nanotechnol 2014; 9: 682–686. doi: 10.1038/nnano.2014.167
[41] Zewail AH. Femtochemistry: atomic-scale dynamics of the chemical bond. J Phys Chem A 2000; 104: 5660–5694. doi: 10.1021/jp001460h
[42] Dantus M, Bowman RM, Zewail AH. Femtosecond laser observations of molecular vibration and rotation. Nature 1990; 343: 737–739. doi: 10.1038/343737a0
[43] Zewail AH. Laser femtochemistry. Science 1988; 242: 1645–1653. doi: 10.1126/science.242.4886.1645
[44] Zewail AH. Femtochemistry: recent progress in studies of dynamics and control of reactions and their transition states. J Phys Chem 1996; 100: 12701–12724. doi: 10.1021/jp960658s
[45] Barwick B, Flannigan DJ, Zewail AH. Photon-induced near-field electron microscopy. Nature 2009; 462: 902–906. doi: 10.1038/nature08662
[46] Carbone F, Kwon OH, Zewail AH. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy. Science 2009; 325: 181–184. doi: 10.1126/science.1175005
[47] Sheng CX, Zhang C, Zhai YX, Mielczarek K, Wang WW et al. Exciton versus free carrier photogeneration in organometal trihalide perovskites probed by broadband ultrafast polarization memory dynamics. Phys Rev Lett 2015; 114: 116601. doi: 10.1103/PhysRevLett.114.116601
[48] Hockett P, Bisgaard CZ, Clarkin OJ, Stolow A. Time-resolved imaging of purely valence-electron dynamics during a chemical reaction. Nat Phys 2011; 7: 612–615. doi: 10.1038/nphys1980
[49] Konar A, Shu YN, Lozovoy VV, Jackson JE, Levine BG et al. Polyatomic molecules under intense femtosecond laser irradiation. J Phys Chem A 2014; 118: 11433–11450. doi: 10.1021/jp505498t
[50] Sansone G, Kelkensberg F, Pérez-Torres JF, Morales F, Kling MF et al. Electron localization following attosecond molecular photoionization. Nature 2010; 465: 763–766. doi: 10.1038/nature09084
[51] Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T et al. Attosecond imaging of molecular electronic wavepackets. Nat Phys 2010; 6: 200–206. doi: 10.1038/nphys1511
[52] Wang ZH, Zeng B, Li GH, Xie HQ, Chu W et al. Time-resolved shadowgraphs of transient plasma induced by spatiotemporally focused femtosecond laser pulses in fused silica glass. Opt Lett 2015; 40: 5726–5729. doi: 10.1364/OL.40.005726
[53] Höhm S, Rosenfeld A, Krüger J, Bonse J. Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica. Appl Phys Lett 2013; 102: 054102. doi: 10.1063/1.4790284
[54] Murphy RD, Torralva B, Adams DP, Yalisove SM. Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si. Appl Phys Lett 2013; 103: 141104. doi: 10.1063/1.4823588
[55] Hayasaki Y, Iwata K, Hasegawa S, Takita A, Juodkazis S. Time-resolved axial-view of the dielectric breakdown under tight focusing in glass. Opt Mater Express 2011; 1: 1399–1408. doi: 10.1364/OME.1.001399
[56] Papazoglou DC, Tzortzakis S. In-line holography for the characterization of ultrafast laser filamentation in transparent media. Appl Phys Lett 2008; 93: 041120. doi: 10.1063/1.2968190
[57] Temnov VV, Sokolowski-Tinten K, Zhou P, El-Khamhawy A, von der Linde D. Multiphoton ionization in dielectrics: comparison of circular and linear polarization. Phys Rev Lett 2006; 97: 237403. doi: 10.1103/PhysRevLett.97.237403
[58] Duocastella M, Arnold CB. Bessel and annular beams for materials processing. Laser Photon Rev 2012; 6: 607–621. doi: 10.1002/lpor.201100031
[59] Papazoglou DG, Suntsov S, Abdollahpour D, Tzortzakis S. Tunable intense Airy beams and tailored femtosecond laser filaments. Phys Rev A 2010; 81: 061807. doi: 10.1103/PhysRevA.81.061807
[60] Mathis A, Courvoisier F, Froehly L, Furfaro L, Jacquot M et al. Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Appl Phys Lett 2012; 101: 071110. doi: 10.1063/1.4745925
[61] Žukauskas A, Malinauskas M, Brasselet E. Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale. Appl Phys Lett 2013; 103: 181122. doi: 10.1063/1.4828662
[62] Bhuyan MK, Velpula PK, Colombier JP, Olivier T, Faure N et al. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams. Appl Phys Lett 2014; 104: 021107. doi: 10.1063/1.4861899
[63] Bandres MA, Rodríguez-Lara BM. Nondiffracting accelerating waves: weber waves and parabolic momentum. New J Phys 2013; 15: 013054. doi: 10.1088/1367-2630/15/1/013054
[64] Wetzel B, Xie C, Lacourt PA, Dudley JM, Courvoisier F. Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beams. Appl Phys Lett 2013; 103: 241111. doi: 10.1063/1.4846415
[65] Toyoda K, Miyamoto K, Aoki N, Morita R, Omatsu T. Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett 2012; 12: 3645–3649. doi: 10.1021/nl301347j
[66] Brixner T, Gerber G. Femtosecond polarization pulse shaping. Opt Lett 2001; 26: 557–559. doi: 10.1364/OL.26.000557
[67] Han W, Yang YF, Cheng W, Zhan QW. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt Express 2013; 21: 20692–20706. doi: 10.1364/OE.21.020692
[68] Kammel R, Ackermann R, Thomas J, Götte J, Skupin S et al. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing. Light Sci Appl 2014; 3: e169 doi: 10.1038/lsa.2014.50.
[69] Odoulov S, Shumelyuk A, Badorreck H, Nolte S, Voit KM et al. Interference and holography with femtosecond laser pulses of different colours. Nat Commun 2015; 6: 5866. doi: 10.1038/ncomms6866
[70] Rabitz H, de Vivie-Riedle R, Motzkus M, Kompa K. Whither the future of controlling quantum phenomena? Science 2000; 288: 824–828. doi: 10.1126/science.288.5467.824
[71] Brif C, Chakrabarti R, Rabitz H. Control of quantum phenomena: past, present, and future. New J Phys 2010; 12: 075008. doi: 10.1088/1367-2630/12/7/075008
[72] Colombier J-P, Combis P, Rosenfeld A, Hertel IV, Audouard E et al. Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples. Phys Rev B 2006; 74: 224106. doi: 10.1103/PhysRevB.74.224106
[73] Lindinger A, Lupulescu C, Plewicki M, Vetter F, Merli A et al. Isotope selective ionization by optimal control using shaped femtosecond laser pulses. Phys Rev Lett 2004; 93: 033001. doi: 10.1103/PhysRevLett.93.033001
[74] Jau YY, Hankin A, Keating T, Deutsch IH, Biedermann G. Entangling atomic spins with a Rydberg-dressed spin-flip blockade. Nat Phys 2016; 12: 71–74. doi: 10.1038/nphys3487
[75] King PDC, Wei HI, Nie YF, Uchida M, Adamo C et al. Atomic-scale control of competing electronic phases in ultrathin LaNiO3. Nat Nanotechnol 2014; 9: 443–447. doi: 10.1038/nnano.2014.59
[76] Wienholdt S, Hinzke D, Nowak U. THz switching of antiferromagnets and ferrimagnets. Phys Rev Lett 2012; 108: 247207. doi: 10.1103/PhysRevLett.108.247207
[77] Kampfrath T, Tanaka K, Nelson KA. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat Photon 2013; 7: 680–690. doi: 10.1038/nphoton.2013.184
[78] Mikhaylovskiy RV, Hendry E, Secchi A, Mentink JH, Eckstein M et al. Ultrafast optical modification of exchange interactions in iron oxides. Nat Commun 2015; 6: 8190. doi: 10.1038/ncomms9190
[79] Baierl S, Hohenleutner M, Kampfrath T, Zvezdin AK, Kimel AV et al. Nonlinear spin control by terahertz-driven anisotropy fields. Nat Photon 2016; 10: 715–718. doi: 10.1038/nphoton.2016.181
[80] Kampfrath T, Sell A, Klatt G, Pashkin A, Mahrlein S et al. Coherent terahertz control of antiferromagnetic spin waves. Nat Photon 2011; 5: 31–34. doi: 10.1038/nphoton.2010.259
[81] Renard M, Hertz E, Lavorel B, Faucher O. Controlling ground-state rotational dynamics of molecules by shaped femtosecond laser pulses. Phys Rev A 2004; 69: 043401. doi: 10.1103/PhysRevA.69.043401
[82] Moore K, Rabitz H. Laser control: manipulating molecules. Nat Chem 2012; 4: 72–73. doi: 10.1038/nchem.1252
[83] Assion A, Baumert T, Bergt M, Brixner T, Kiefer B et al. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 1998; 282: 919–922. doi: 10.1126/science.282.5390.919
[84] Corrales ME, González-Vázquez J, Balerdi G, Solá IR, De Nalda R et al. Control of ultrafast molecular photodissociation by laser-field-induced potentials. Nat Chem 2014; 6: 785–790. doi: 10.1038/nchem.2006
[85] Andreev AA, Limpouch J, Iskakov AB, Nakano H. Enhancement of X-ray line emission from plasmas produced by short high-intensity laser double pulses. Phys Rev E 2002; 65: 026403. doi: 10.1103/PhysRevE.65.026403
[86] Fazeli R, Mahdieh MH. Comparison of line X-ray emission from solid and porous nano-layer coated targets irradiated by double laser pulses. Phys Plasmas 2015; 22: 113303. doi: 10.1063/1.4935289
[87] Fazeli R. Enhanced X-ray emission from laser-produced gold plasma by double pulses irradiation of nano-porous targets. Phys Lett A 2017; 381: 467–471. doi: 10.1016/j.physleta.2016.11.024
[88] Esser D, Rezaei S, Li JZ, Herman PR, Gottmann J. Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses. Opt Express 2011; 19: 25632–25642. doi: 10.1364/OE.19.025632
[89] Karimelahi S, Abolghasemi L, Herman PR. Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser. Appl Phys A 2014; 114: 91–111. doi: 10.1007/s00339-013-8155-8
[90] Kerse C, Kalaycıoğlu H, Elahi P, Çetin B, Kesim DK et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 2016; 537: 84–88. doi: 10.1038/nature18619
[91] Wu AQ, Xu XF Coherent phonon excitation by ultrafast pulse trains 2007. First International Conference on Integration and Commercialization of MICRO and Nanosystems; 10–13 January 2007; Sanya, Hainan, China. Sanya, Hainan, China: ASME. 2007, pp955–pp957.
[92] Wang JL, Guo L, Liu CH, Xu X, Chen YF. Influence of coherent optical phonon on ultrafast energy relaxation. Appl Phys Lett 2015; 107: 063107. doi: 10.1063/1.4928657
[93] Sheppard CJR, Wilson T. Gaussian-beam theory of lenses with annular aperture. IEE J Microw Opt Acoustics 1978; 2: 105–112. doi: 10.1049/ij-moa.1978.0023
[94] Marcinkevičius A, Juodkazis S, Matsuo S, Mizeikis V, Misawa H. Application of Bessel beams for microfabrication of dielectrics by femtosecond laser. Jpn J Appl Phys 2001; 40: L1197–L1199. doi: 10.1143/JJAP.40.L1197
[95] Courvoisier F, Lacourt PA, Jacquot M, Bhuyan MK, Furfaro L et al. Surface nanoprocessing with nondiffracting femtosecond Bessel beams. Opt Lett 2009; 34: 3163–3165. doi: 10.1364/OL.34.003163
[96] Bhuyan MK, Courvoisier F, Lacourt PA, Jacquot M, Salut R et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Appl Phys Lett 2010; 97: 081102. doi: 10.1063/1.3479419
[97] Rapp L, Meyer R, Giust R, Furfaro L, Jacquot M et al. High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams. Sci Rep 2016; 6: 34286. doi: 10.1038/srep34286
[98] Wang C, Jiang L, Wang F, Li X, Yuan YP et al. First-principles calculations of the electron dynamics during femtosecond laser pulse train material interactions. Phys Lett A 2011; 375: 3200–3204. doi: 10.1016/j.physleta.2011.07.009
[99] Wang C, Jiang L, Wang F, Li X, Yuan YP et al. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation. J Phys Condens Matter 2012; 24: 275801. doi: 10.1088/0953-8984/24/27/275801
[100] Wang C, Jiang L, Wang F, Li X, Yuan YP et al. Transient localized electron dynamics simulation during femtosecond laser tunnel ionization of diamond. Phys Lett A 2012; 376: 3327–3331. doi: 10.1016/j.physleta.2012.07.039
[101] Wang C, Jiang L, Li X, Wang F, Yuan YP et al. Frequency dependence of electron dynamics during femtosecond laser resonant photoionization of Li4 cluster. J Appl Phys 2013; 114: 143105. doi: 10.1063/1.4825059
[102] Wang C, Jiang L, Li X, Wang F, Yuan YP et al. Nonlinear ionization mechanism dependence of energy absorption in diamond under femtosecond laser irradiation. J Appl Phys 2013; 113: 143106. doi: 10.1063/1.4801802
[103] Yu D, Jiang L, Wang F, Li X, Qu LT et al. Electron ionization and spin polarization control of Fe atom adsorbed graphene irradiated by a femtosecond laser. Phys Lett A 2015; 379: 2615–2618. doi: 10.1016/j.physleta.2015.06.001
[104] Yu D, Jiang L, Wang F, Qu LT, Lu YF. First-principles calculation of multiphoton absorption cross section of α-quartz under femtosecond laser irradiation. Appl Phys A 2016; 122: 494. doi: 10.1007/s00339-016-9922-0
[105] Su GS, Jiang L, Wang F, Qu LT, Lu YF. First-principles simulations for excitation of currents in linear carbon chains under femtosecond laser pulse irradiation. Phys Lett A 2016; 380: 2453–2457. doi: 10.1016/j.physleta.2016.05.022
[106] Gao L, Wang F, Jiang L, Qu LT, Lu YF. Controlling the excitation process of free electrons by a femtosecond elliptically polarized laser. Int J Modern Phys B 2015; 29: 1550033. doi: 10.1142/S0217979215500332
[107] Gao LL, Wang F, Jiang L, Qu LT, Lu YF. Optical-induced electrical current in diamond switched by femtosecond-attosecond laser pulses by ab initio simulations. J Phys D Appl Phys 2015; 49: 025102. doi: 10.1088/0022-3727/49/2/025102
[108] Li X, Jiang L, Tsai H-L. Phase change mechanisms during femtosecond laser pulse train ablation of nickel thin films. J Appl Phys 2009; 106: 064906. doi: 10.1063/1.3223331
[109] Li X, Jiang L. Size distribution control of metal nanoparticles using femtosecond laser pulse train: a molecular dynamics simulation. Appl Phys A 2012; 109: 367–376. doi: 10.1007/s00339-012-7269-8
[110] Yuan YP, Jiang L, Li X, Wang C, Xiao H et al. Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse train processing of dielectrics. J Phys D Appl Phys 2012; 45: 175301. doi: 10.1088/0022-3727/45/17/175301
[111] Yuan YP, Jiang L, Li X, Wang C, Lu YF. Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains. J Appl Phys 2012; 112: 103103. doi: 10.1063/1.4765671
[112] Yuan YP, Jiang L, Li X, Wang C, Qu LT et al. Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains. Appl Phys A 2013; 111: 813–819. doi: 10.1007/s00339-013-7628-0
[113] Zhang KH, Jiang L, Li X, Shi XS, Yu D et al. Femtosecond laser pulse-train induced breakdown in fused silica: the role of seed electrons. J Phys D Appl Phys 2014; 47: 435105. doi: 10.1088/0022-3727/47/43/435105
[114] Jiang L, Tsai HL. Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse. Int J Heat Mass Transfer 2005; 48: 487–499. doi: 10.1016/j.ijheatmasstransfer.2004.09.016
[115] Jiang L, Tsai HL. Energy transport and nanostructuring of dielectrics by femtosecond laser pulse trains. J Heat Transfer 2006; 128: 926–933. doi: 10.1115/1.2241979
[116] Jiang L, Tsai HL. Improved two-temperature model and its application in ultrashort laser heating of metal films. J Heat Transfer 2005; 127: 1167–1173. doi: 10.1115/1.2035113
[117] Jiang L, Tsai HL Fundamentals of energy cascade during ultrashort laser-material interactions Proceedings Volume 5713, Photon Processing in Microelectronics and Photonics Ⅳ; 12 April 2005; San Jose, California, United States. San Jose, California, United States: SPTE, 2005.
[118] Jiang L, Tsai HL. A plasma model combined with an improved two-temperature equation for ultrafast laser ablation of dielectrics. J Appl Phys 2008; 104: 093101. doi: 10.1063/1.3006129
[119] Jiang L, Liu PJ, Yan XL, Leng N, Xu CC et al. High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains. Opt Lett 2012; 37: 2781–2783. doi: 10.1364/OL.37.002781
[120] Lin CH, Rao ZH, Jiang L, Tsai WJ, Wu PH et al. Investigations of femtosecond-nanosecond dual-beam laser ablation of dielectrics. Opt Lett 2010; 35: 2490–2492. doi: 10.1364/OL.35.002490
[121] Zhao MJ, Hu J, Jiang L, Zhang KH, Liu PJ et al. Controllable high-throughput high-quality femtosecond laser-enhanced chemical etching by temporal pulse shaping based on electron density control. Sci Rep 2015; 5: 13202. doi: 10.1038/srep13202
[122] Jiang L, Shi XS, Li X, Yuan YP, Wang C et al. Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains. Opt Express 2012; 20: 21505–21511. doi: 10.1364/OE.20.021505
[123] Shi XS, Jiang L, Li X, Wang SM, Yuan YP et al. Femtosecond laser-induced periodic structure adjustments based on electron dynamics control: from subwavelength ripples to double-grating structures. Opt Lett 2013; 38: 3743–3746. doi: 10.1364/OL.38.003743
[124] Jiang L, Ying DW, Li X, Lu YF. Two-step femtosecond laser pulse train fabrication of nanostructured substrates for highly surface-enhanced Raman scattering. Opt Lett 2012; 37: 3648–3650. doi: 10.1364/OL.37.003648
[125] Zhang N, Li X, Jiang L, Shi XS, Li C et al. Femtosecond double-pulse fabrication of hierarchical nanostructures based on electron dynamics control for high surface-enhanced Raman scattering. Opt Lett 2013; 38: 3558–3561. doi: 10.1364/OL.38.003558
[126] Yang QQ, Li X, Jiang L, Zhang N, Zhang GM et al. Nanopillar arrays with nanoparticles fabricated by a femtosecond laser pulse train for highly sensitive SERRS. Opt Lett 2015; 40: 2045–2048. doi: 10.1364/OL.40.002045
[127] Zuo P, Jiang L, Li X, Li B, Xu YD et al. Shape-controllable gold nanoparticles-MoS2hybrids prepared by tuning edge-active sites and surface structures of MoS2 via temporally shaped femtosecond pulses. ACS Appl Mater Interfaces 2017; 9: 7447–7455. doi: 10.1021/acsami.6b14805
[128] Xu CC, Jiang L, Leng N, Yuan YP, Liu PJ et al. Ultrafast laser ablation size and recast adjustment in dielectrics based on electron dynamicscontrol by pulse train shaping. Chin Opt Lett 2013; 11: 041403. doi: 10.3788/COL201311.041403
[129] Wang AD, Jiang L, Li XW, Liu Y, Dong XZ et al. Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses. Adv Mater 2015; 27: 6238–6243. doi: 10.1002/adma.201503289
[130] Yu YW, Jiang L, Cao Q, Shi XS, Wang QS et al. Ultrafast imaging the light-speed propagation of a focused femtosecond laser pulse in air and its ionized electron dynamics and plasma-induced pulse reshaping. Appl Phys A 2016; 122: 205. doi: 10.1007/s00339-016-9773-8
[131] Yu YW, Jiang L, Cao Q, Xia B, Wang QS et al. Pump-probe imaging of the fs-ps-ns dynamics during femtosecond laser Bessel beam drilling in PMMA. Opt Express 2015; 23: 32728–32735. doi: 10.1364/OE.23.032728
[132] Xie Q, Li XW, Jiang L, Xia B, Yan XL et al. High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser Bessel beam. Appl Phys A 2016; 122: 136. doi: 10.1007/s00339-016-9613-x
[133] Xia B, Jiang L, Li XW, Yan XL, Lu YF. Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling. Opt Express 2015; 23: 27853–27864. doi: 10.1364/OE.23.027853
[134] Wang MM, Wang SM, Cao ZT, Wang P, Wang C Investigation of double-pulse femtosecond laser induced breakdown spectroscopy of polymethyl methacrylate (PMMA) Proceedings Volume 9351, Laser-based Micro- and Nanoprocessing Ⅸ; 12 March 2015; San Francisco, California, United States. San Francisco, California, United States: SPIE, 2015.
[135] Zhao WW, Li XW, Xia B, Yan XL, Han WN et al. Single-pulse femtosecond laser Bessel beams drilling of high-aspect-ratio microholes based on electron dynamics control Proceedings Volume 9296, International Symposium on Optoelectronic Technology and Application 2014: Advanced Display Technology; Nonimaging Optics: Efficient Design for Illumination and Solar Concentration; 21 November 2014; Beijing, China. Beijing, China: SPIE, 2014.
[136] Lorazo P, Lewis LJ, Meunier M. Short-pulse laser ablation of solids: from phase explosion to fragmentation. Phys Rev Lett 2003; 91: 225502. doi: 10.1103/PhysRevLett.91.225502
[137] Sokolowski-Tinten K, Solis J, Bialkowski J, Siegel J, Afonso C et al. Dynamics of ultrafast phase changes in amorphous GeSb films. Phys Rev Lett 1998; 81: 3679–3682. doi: 10.1103/PhysRevLett.81.3679
[138] Sokolowski-Tinten K, Bialkowski J, Cavalleri A, von der Linde D, Oparin A et al. Transient states of matter during short pulse laser ablation. Phys Rev Lett 1998; 81: 224–227. doi: 10.1103/PhysRevLett.81.224
[139] Girifalco LA, Weizer VG. Application of the Morse potential function to cubic metals. Phys Rev 1959; 114: 687–690. doi: 10.1103/PhysRev.114.687
[140] Han WN, Jiang L, Li XW, Wang QS, Li H et al. Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay. Opt Express 2014; 22: 15820–15828. doi: 10.1364/OE.22.015820
[141] Leng N, Jiang L, Li X, Xu CC, Liu PJ et al. Femtosecond laser processing of fused silica and aluminum based on electron dynamics control by shaping pulse trains. Appl Phys A 2012; 109: 679–684. doi: 10.1007/s00339-012-7098-9
[142] Preston JS, Van Driel HM, Sipe JE. Order-disorder transitions in the melt morphology of laser-irradiated silicon. Phys Rev Lett 1987; 58: 69–72. doi: 10.1103/PhysRevLett.58.69
[143] Jia TQ, Chen HX, Huang M, Zhao FL, Qiu JR et al. Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses. Phys Rev B 2005; 72: 125429. doi: 10.1103/PhysRevB.72.125429
[144] Bonse J, Munz M, Sturm H. Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses. J Appl Phys 2005; 97: 013538. doi: 10.1063/1.1827919
[145] Okamuro K, Hashida M, Miyasaka Y, Ikuta Y, Tokita S et al. Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation. Phys Rev B 2010; 82: 165417. doi: 10.1103/PhysRevB.82.165417
[146] Taylor RS, Hnatovsky C, Simova E, Rayner DM, Bhardwaj VR et al. Femtosecond laser fabrication of nanostructures in silica glass. Opt Lett 2003; 28: 1043–1045. doi: 10.1364/OL.28.001043
[147] Shimotsuma Y, Kazansky PG, Qiu JR, Hirao K. Self-Organized nanogratings in glass irradiated by ultrashort light pulses. Phys Rev Lett 2003; 91: 247405. doi: 10.1103/PhysRevLett.91.247405
[148] Yuan HC, Yost VE, Page MR, Stradins P, Meier DL et al. Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules. Appl Phys Lett 2009; 95: 123501. doi: 10.1063/1.3231438
[149] Li JZ, Ho S, Haque M, Herman PR. Nanograting Bragg responses of femtosecond laser written optical waveguides in fused silica glass. Opt Mater Express 2012; 2: 1562–1570. doi: 10.1364/OME.2.001562
[150] Dusser B, Sagan Z, Soder H, Faure N, Colombier JP et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Express 2010; 18: 2913–2924. doi: 10.1364/OE.18.002913
[151] Vorobyev AY, Guo CL. Colorizing metals with femtosecond laser pulses. Appl Phys Lett 2008; 92: 041914. doi: 10.1063/1.2834902
[152] Chen JT, Lai WC, Kao YJ, Yang YY, Sheu JK. Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes. Opt Express 2012; 20: 5689–5695. doi: 10.1364/OE.20.005689
[153] Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv Mater 2008; 20: 4049–4054. doi: 10.1002/adma.200800651
[154] Martín-Fabiani I, Rebollar E, Pérez S, Rueda DR, García-Gutiérrez MC et al. Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films. Langmuir 2012; 28: 7938–7945. doi: 10.1021/la300833x
[155] Le Harzic R, Dörr D, Sauer D, Stracke F, Zimmermann H. Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation. Appl Phys Lett 2011; 98: 211905. doi: 10.1063/1.3593493
[156] Shinoda M, Gattass RR, Mazur E. Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces. J Appl Phys 2009; 105: 053102. doi: 10.1063/1.3079512
[157] Bonse J, Krüger J. Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon. J Appl Phys 2010; 108: 034903. doi: 10.1063/1.3456501
[158] Bonse J, Rosenfeld A, Krüger J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J Appl Phys 2009; 106: 104910. doi: 10.1063/1.3261734
[159] Huang M, Zhao FL, Cheng Y, Xu NS, Xu ZZ. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 2009; 3: 4062–4070. doi: 10.1021/nn900654v
[160] Wang L, Xu B-B, Cao X-W, Li Q-K, Tian W-J et al. Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses. Optica 2017; 4: 637–642. doi: 10.1364/OPTICA.4.000637
[161] Reif J, Costache F, Henyk M, Pandelov SV. Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl Surface Sci 2002; 197-198: 891–895. doi: 10.1016/S0169-4332(02)00450-6
[162] Le Harzic R, Dörr D, Sauer D, Neumeier M, Epple M et al. Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate. Opt Lett 2011; 36: 229–231. doi: 10.1364/OL.36.000229
[163] Dufft D, Rosenfeld A, Das SK, Grunwald R, Bonse J. Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO. J Appl Phys 2009; 105: 034908. doi: 10.1063/1.3074106
[164] Borowiec A, Haugen HK. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl Phys Lett 2003; 82: 4462–4464. doi: 10.1063/1.1586457
[165] Li XF, Zhang CY, Li H, Dai QF, Lan S et al. Formation of 100-nm periodic structures on a titanium surface by exploiting the oxidation and third harmonic generation induced by femtosecond laser pulses. Opt Express 2014; 22: 28086–28099. doi: 10.1364/OE.22.028086
[166] Miyaji G, Miyazaki K. Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses. Opt Express 2008; 16: 16265–16271. doi: 10.1364/OE.16.016265
[167] Hou SS, Huo YY, Xiong PX, Zhang Y, Zhang SA et al. Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses. J Phys D Appl Phys 2011; 44: 505401. doi: 10.1088/0022-3727/44/50/505401
[168] Bahk SW, Rousseau P, Planchon TA, Chvykov V, Kalintchenko G et al. Generation and characterization of the highest laser intensities (1022 W/cm2. Opt Lett 2004; 29: 2837–2839. doi: 10.1364/OL.29.002837
[169] Nathala CSR, Ajami A, Ionin AA, Kudryashov SI, Makarov SV et al. Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium. Opt Express 2015; 23: 5915–5929. doi: 10.1364/OE.23.005915
[170] Straub M, Afshar M, Feili D, Seidel H, König K. Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon. J Appl Phys 2012; 111: 124315. doi: 10.1063/1.4730381
[171] Derrien TJY, Krüger J, Itina TE, Höhm S, Rosenfeld A et al. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon. Opt Express 2013; 21: 29643–29655. doi: 10.1364/OE.21.029643
[172] Derrien TJY, Krüger J, Itina TE, Höhm S, Rosenfeld A et al. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes. Appl Phys A 2014; 117: 77–81. doi: 10.1007/s00339-013-8205-2
[173] Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Heidelberg: Springer, 1988.
[174] Clark SE, Emmony DC. Ultraviolet-laser-induced periodic surface structures. Phys Rev B 1989; 40: 2031–2041. doi: 10.1103/PhysRevB.40.2031
[175] Stoian R, Boyle M, Thoss A, Rosenfeld A, Korn G et al. Laser ablation of dielectrics with temporally shaped femtosecond pulses. Appl Phys Lett 2002; 80: 353–355. doi: 10.1063/1.1432747
[176] Hommes V, Miclea M, Hergenröder R. Silicon surface morphology study after exposure to tailored femtosecond pulses. Appl Surface Sci 2006; 252: 7449–7460. doi: 10.1016/j.apsusc.2005.08.089
[177] Kim J, Na S, Cho S, Chang W, Whang K. Surface ripple changes during Cr film ablation with a double ultrashort laser pulse. Opt Lasers Eng 2008; 46: 306–310. doi: 10.1016/j.optlaseng.2007.12.003
[178] Rosenfeld A, Rohloff M, Höhm S, Krüger J, Bonse J. Formation of laser-induced periodic surface structures on fused silica upon multiple parallel polarized double-femtosecond-laser-pulse irradiation sequences. Appl Surface Sci 2012; 258: 9233–9236. doi: 10.1016/j.apsusc.2011.09.076
[179] Barberoglou M, Gray D, Magoulakis E, Fotakis C, Loukakos PA et al. Controlling ripples' periodicity using temporally delayed femtosecond laser double pulses. Opt Express 2013; 21: 18501–18508. doi: 10.1364/OE.21.018501
[180] Höhm S, Rosenfeld A, Krüger J, Bonse J. Femtosecond laser-induced periodic surface structures on silica. J Appl Phys 2012; 112: 014901. doi: 10.1063/1.4730902
[181] Seifert G, Kaempfe M, Syrowatka F, Harnagea C, Hesse D et al. Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass. Appl Phys A 2005; 81: 799–803. doi: 10.1007/s00339-004-2867-8
[182] Ben-Yakar A, Harkin A, Ashmore J, Byer RL, Stone HA. Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses. J Phys D Appl Phys 2007; 40: 1447–1459. doi: 10.1088/0022-3727/40/5/021
[183] Ladieu F, Martin P, Guizard S. Measuring thermal effects in femtosecond laser-induced breakdown of dielectrics. Appl Phys Lett 2002; 81: 957–959. doi: 10.1063/1.1498147
[184] Richter S, Heinrich M, Döring S, Tünnermann A, Nolte S et al. Nanogratings in fused silica: formation, control, and applications. J Laser Appl 2012; 24: 042008. doi: 10.2351/1.4718561
[185] Richter S, Jia F, Heinrich M, Döring S, Peschel U et al. The role of self-trapped excitons and defects in the formation of nanogratings in fused silica. Opt Lett 2012; 37: 482–484. doi: 10.1364/OL.37.000482
[186] Deng YP, Xie XH, Xiong H, Leng YX, Cheng CF et al. Optical breakdown for silica and silicon with double femtosecond laser pulses. Opt Express 2005; 13: 3096–3103. doi: 10.1364/OPEX.13.003096
[187] Liang F, Vallée R, Chin SL. Mechanism of nanograting formation on the surface of fused silica. Opt Express 2012; 20: 4389–4396. doi: 10.1364/OE.20.004389
[188] Li JF, Huang YF, Ding Y, Yang ZL, Li SB et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010; 464: 392–395. doi: 10.1038/nature08907
[189] De Angelis F, Gentile F, Mecarini F, Das G, Moretti M et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat Photon 2011; 5: 682–687. doi: 10.1038/nphoton.2011.222
[190] Lin CH, Jiang L, Chai YH, Xiao H, Chen SJ et al. One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering. Opt Express 2009; 17: 21581–21589. doi: 10.1364/OE.17.021581
[191] Nagpal P, Lindquist NC, Oh SH, Norris DJ. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 2009; 325: 594–597. doi: 10.1126/science.1174655
[192] Le Ru E, Etchegoin P. Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects. Amsterdam: Elsevier, 2008.
[193] Otto A, Mrozek I, Grabhorn H, Akemann W. Surface-enhanced Raman scattering. J Phys Condens Matter 1992; 4: 1143–1212. doi: 10.1088/0953-8984/4/5/001
[194] Paradisanos I, Kymakis E, Fotakis C, Kioseoglou G, Stratakis E. Intense femtosecond photoexcitation of bulk and monolayer MoS2. Appl Phys Lett 2014; 105: 041108. doi: 10.1063/1.4891679
[195] Shi HY, Yan RS, Bertolazzi S, Brivio J, Gao B et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013; 7: 1072–1080. doi: 10.1021/nn303973r
[196] Jersch J, Dickmann K. Nanostructure fabrication using laser field enhancement in the near field of a scanning tunneling microscope tip. Appl Phys Lett 1996; 68: 868–870. doi: 10.1063/1.116527
[197] Tarun A, Daza MRH, Hayazawa N, Inouye Y, Kawata S. Apertureless optical near-field fabrication using an atomic force microscope on photoresists. Appl Phys Lett 2002; 80: 3400–3402. doi: 10.1063/1.1476956
[198] Lee W, Pruzinsky SA, Braun PV. Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals. Adv Mater 2002; 14: 271–274. doi: 10.1002/1521-4095(20020219)14:4<271::AID-ADMA271>3.0.CO;2-Y
[199] Liu ZW, Wei QH, Zhang X. Surface plasmon interference nanolithography. Nano Lett 2005; 5: 957–961. doi: 10.1021/nl0506094
[200] Harilal SS, Diwakar PK, Hassanein A. Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy. Appl Phys Lett 2013; 103: 041102. doi: 10.1063/1.4816348
[201] Guo J, Wang TF, Shao JF, Sun T, Wang R et al. Emission enhancement ratio of the metal irradiated by femtosecond double-pulse laser. Opt Commun 2012; 285: 1895–1899. doi: 10.1016/j.optcom.2011.12.038
[202] Axente E, Noël S, Hermann J, Sentis M, Mihailescu IN. Correlation between plasma expansion and damage threshold by femtosecond laser ablation of fused silica. J Phys D Appl Phys 2008; 41: 105216. doi: 10.1088/0022-3727/41/10/105216
[203] Quentin U, Leitz KH, Deichmann L, Alexeev I, Schmidt M. Optical trap assisted laser nanostructuring in the near-field of microparticles. J Laser Appl 2012; 24: 042003. doi: 10.2351/1.4704853
[204] He F, Cheng Y, Xu ZZ, Liao Y, Xu J et al. Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser. Opt Lett 2010; 35: 282–284. doi: 10.1364/OL.35.000282
[205] Gottmann J, Hermans M, Repiev N, Ortmann J. Selective laser-induced etching of 3D precision quartz glass components for microfluidic applications—up-scaling of complexity and speed. Micromachines 2017; 8: 110. doi: 10.3390/mi8040110
[206] Zhao X, Shin YC. Femtosecond laser drilling of high-aspect ratio microchannels in glass. Appl Phys A 2011; 104: 713–719. doi: 10.1007/s00339-011-6326-z
[207] Döring S, Szilagyi J, Richter S, Zimmermann F, Richardson M et al. Evolution of hole shape and size during short and ultrashort pulse laser deep drilling. Opt Express 2012; 20: 27147–27154. doi: 10.1364/OE.20.027147
[208] Xia B, Jiang L, Li X, Yan X, Zhao W et al. High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum. Appl Phys A 2015; 119: 61–68. doi: 10.1007/s00339-014-8955-5