| [1] | Bacon, C. P., Mattley, Y. & DeFrece, R. Miniature spectroscopic instrumentation: Applications to biology and chemistry. Review of Scientific Instruments 75, 1-16 (2004). doi: 10.1063/1.1633025 |
| [2] | Seunggoo, K. , Son, D. & Park, J. Electronic device comprising plurality of light sources. (2021). |
| [3] | Xia, Z. X. et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators. Optics Express 19, 12356-12364 (2011). doi: 10.1364/OE.19.012356 |
| [4] | Kita, D. M. et al. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nature Communications 9, 4405 (2018). doi: 10.1038/s41467-018-06773-2 |
| [5] | Yang, Z. Y. et al. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021). doi: 10.1126/science.abe0722 |
| [6] | Edwards, P. et al. Smartphone based optical spectrometer for diffusive reflectance spectroscopic measurement of hemoglobin. Scientific Reports 7, 12224 (2017). doi: 10.1038/s41598-017-12482-5 |
| [7] | Malinen, J. et al. Advances in miniature spectrometer and sensor development. Proceedings of SPIE 9101, Next-Generation Spectroscopic Technologies VII. Baltimore, MD, USA: SPIE, 2014. |
| [8] | Ebermann, M. et al. Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review. Proceedings of SPIE 9760, MOEMS and Miniaturized Systems XV. San Francisco, CA, USA: SPIE, 2016. |
| [9] | Cheng, R. S. et al. Broadband on-chip single-photon spectrometer. Nature Communications 10, 4104 (2019). doi: 10.1038/s41467-019-12149-x |
| [10] | Zhu, A. Y. et al. Ultra-compact visible chiral spectrometer with meta-lenses. APL Photonics 2, 036103 (2017). doi: 10.1063/1.4974259 |
| [11] | Yang, C. et al. Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device. Optics Express 18, 23529-23534 (2010). doi: 10.1364/OE.18.023529 |
| [12] | Subramanian, A. Z. et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [invited]. Photonics Research 3, B47-B59 (2015). doi: 10.1364/PRJ.3.000B47 |
| [13] | Gao, B. S., Shi, Z. M. & Boyd, R. W. Design of flat-band superprism structures for on-chip spectroscopy. Optics Express 23, 6491-6496 (2015). doi: 10.1364/OE.23.006491 |
| [14] | Cheben, P. et al. A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides. Optics Express 15, 2299-2306 (2007). doi: 10.1364/OE.15.002299 |
| [15] | Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105-1109 (2018). doi: 10.1126/science.aas9768 |
| [16] | Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67-70 (2015). doi: 10.1038/nature14576 |
| [17] | Zhu, X. X. et al. Broadband perovskite quantum dot spectrometer beyond human visual resolution. Light: Science & Applications 9 , 73 (2020). |
| [18] | Wang, S. W. et al. Concept of a high-resolution miniature spectrometer using an integrated filter array. Optics Letters 32, 632-634 (2007). doi: 10.1364/OL.32.000632 |
| [19] | Pervez, N. K. et al. Photonic crystal spectrometer. Optics Express 18, 8277-8285 (2010). doi: 10.1364/OE.18.008277 |
| [20] | Redding, B. et al. Compact spectrometer based on a disordered photonic chip. Nature Photonics 7, 746-751 (2013). doi: 10.1038/nphoton.2013.190 |
| [21] | Hartmann, W. et al. Waveguide-integrated broadband spectrometer based on tailored disorder. Advanced Optical Materials 8, 1901602 (2020). doi: 10.1002/adom.201901602 |
| [22] | Redding, B., Popoff, S. M. & Cao, H. All-fiber spectrometer based on speckle pattern reconstruction. Optics Express 21, 6584-6600 (2013). doi: 10.1364/OE.21.006584 |
| [23] | Wang, P. & Menon, R. Computational spectrometer based on a broadband diffractive optic. Optics Express 22, 14575-14587 (2014). doi: 10.1364/OE.22.014575 |
| [24] | Yang, T. et al. Miniature spectrometer based on diffraction in a dispersive hole array. Optics Letters 40, 3217-3220 (2015). doi: 10.1364/OL.40.003217 |
| [25] | Redding, B. et al. Evanescently coupled multimode spiral spectrometer. Optica 3, 956-962 (2016). doi: 10.1364/OPTICA.3.000956 |
| [26] | Lee, K. S., Thompson, K. P. & Rolland, J. P. Broadband astigmatism-corrected Czerny-Turner spectrometer. Optics Express 18, 23378-23384 (2010). doi: 10.1364/OE.18.023378 |
| [27] | Chen, T. A. et al. Correction of astigmatism and coma using analytic theory of aberrations in imaging spectrometer based on concentric off-axis dual reflector system. Applied Optics 53, 565-576 (2014). doi: 10.1364/AO.53.000565 |
| [28] | Brown, B. R. & Lohmann, A. W. Complex spatial filtering with binary masks. Applied Optics 5, 967-969 (1966). doi: 10.1364/AO.5.000967 |
| [29] | Yang, W. K. et al. Detour-phased perovskite ultrathin planar lens using direct femtosecond laser writing. Photonics Research 10, 2768-2777 (2022). doi: 10.1364/PRJ.472321 |
| [30] | Wei, S. B. et al. High tolerance detour-phase graphene-oxide flat lens. Photonics Research 9, 2454-2463 (2021). doi: 10.1364/PRJ.434599 |
| [31] | Gu, M. Advanced Optical Imaging Theory. (Berlin: Springer, 2000). |
| [32] | Zheng, X. R. et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nature Communications 6, 8433 (2015). doi: 10.1038/ncomms9433 |
| [33] | Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Letters 8, 902-907 (2008). doi: 10.1021/nl0731872 |
| [34] | Wu, J. Y. et al. Graphene oxide for photonics, electronics and optoelectronics. Nature Reviews Chemistry 7, 162-183 (2023). doi: 10.1038/s41570-022-00458-7 |
| [35] | Lin, H. et al. Engineering van der Waals materials for advanced metaphotonics. Chemical Reviews 122, 15204-15355 (2022). doi: 10.1021/acs.chemrev.2c00048 |
| [36] | Wei, S. B. et al. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region. ACS Nano 15, 4769-4776 (2021). doi: 10.1021/acsnano.0c09395 |