[1] Bao, X. et al. In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light. : Sci. Appl. 7, 91 (2018). doi: 10.1038/s41377-018-0090-1
[2] Li, D. et al. Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion. Light. : Sci. Appl. 5, e16120 (2016). doi: 10.1038/lsa.2016.120
[3] Tao, S. Y. et al. Crosslink-enhanced emission effect on luminescence in polymers: advances and perspectives. Angew. Chem. Int. Ed. 59, 9826–9840 (2020). doi: 10.1002/anie.201916591
[4] Carrara, S. et al. Amine-rich nitrogen-doped carbon nanodots as a platform for self-enhancing electrochemiluminescence. Angew. Chem. Int. Ed. 56, 4757–4761 (2017). doi: 10.1002/anie.201611879
[5] Lu, S. Y. et al. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 29, 1603443 (2017). doi: 10.1002/adma.201603443
[6] Zhu, S. J. et al. Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew. Chem. Int. Ed. 54, 14626–14637 (2015). doi: 10.1002/anie.201504951
[7] Ge, J. C. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5, 4596 (2014). doi: 10.1038/ncomms5596
[8] Qu, D. et al. Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light. : Sci. Appl. 4, e364 (2015). doi: 10.1038/lsa.2015.137
[9] Briscoe, J. et al. Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Angew. Chem. Int. Ed. 54, 4463–4468 (2015). doi: 10.1002/anie.201409290
[10] Yuan, F. L. et al. Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nat. Photonics 14, 171–176 (2019). doi: 10.1038/s41566-019-0557-5
[11] Zhu, S. J. et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52, 3953–3957 (2013). doi: 10.1002/anie.201300519
[12] Feng, T. L. et al. Recent advances in energy conversion applications of carbon dots: from optoelectronic devices to electrocatalysis. Small 16, 2001295 (2020). doi: 10.1002/smll.202001295
[13] Tao, S. Y. et al. Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials. Angew. Chem. Int. Ed. 57, 2393–2398 (2018). doi: 10.1002/anie.201712662
[14] Jiang, K. et al. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew. Chem. Int. Ed. 57, 6216–6220 (2018). doi: 10.1002/anie.201802441
[15] Jiang, K. et al. Carbon dots with dual-emissive, robust, and aggregation-induced room-temperature phosphorescence characteristics. Angew. Chem. Int. Ed. 59, 1263–1269 (2020). doi: 10.1002/anie.201911342
[16] Rigodanza, F. et al. Customizing the electrochemical properties of carbon nanodots by using quinones in bottom-Up synthesis. Angew. Chem. Int. Ed. 57, 5062–5067 (2018). doi: 10.1002/anie.201801707
[17] Zhao, Y. et al. Enhanced charge separation and photocatalytic hydrogen evolution in carbonized-polymer-dot-coupled lead halide perovskites. Mater. Horiz. 7, 2719–2725 (2020). doi: 10.1039/D0MH00955E
[18] Wu, W. T. et al. Cu-N dopants boost electron transfer and photooxidation reactions of carbon dots. Angew. Chem. Int. Ed. 54, 6540–6544 (2015). doi: 10.1002/anie.201501912
[19] Zhu, S. J. et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 8, 355–381 (2015). doi: 10.1007/s12274-014-0644-3
[20] Tao, S. Y. et al. Carbonized polymer dots: a brand new perspective to recognize luminescent carbon-based nanomaterials. J. Phys. Chem. Lett. 10, 5182–5188 (2019). doi: 10.1021/acs.jpclett.9b01384
[21] Ragazzon, G. et al. Optical processes in carbon nanocolloids. Chem 7, 606–628 (2021). doi: 10.1016/j.chempr.2020.11.012
[22] Yuan, F. L. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 9, 2249 (2018). doi: 10.1038/s41467-018-04635-5
[23] Bourlinos, A. B. et al. Surface functionalized carbogenic quantum dots. Small 4, 455–458 (2008). doi: 10.1002/smll.200700578
[24] Song, Y. B. et al. Polymer carbon dots-a highlight reviewing their unique structure, bright emission and probable photoluminescence mechanism. J. Polym. Sci. Part A: Polym. Chem. 55, 610–615 (2017). doi: 10.1002/pola.28416
[25] Xia, C. L. et al. Carbonized polymer dots with tunable room-temperature phosphorescence lifetime and wavelength. ACS Appl. Mater. Interfaces 12, 38593–38601 (2020). doi: 10.1021/acsami.0c11867
[26] Xia, C. L. et al. Hydrothermal addition polymerization for ultrahigh-yield carbonized polymer dots with room temperature phosphorescence via nanocomposite. Chem. -A Eur. J. 24, 11303–11308 (2018). doi: 10.1002/chem.201802712
[27] Lu, S. Y. et al. Graphitic nitrogen and high-crystalline triggered strong photoluminescence and room-temperature ferromagnetism in carbonized polymer dots. Adv. Sci. 6, 1801192 (2019). doi: 10.1002/advs.201801192
[28] Ðorđević, L., Arcudi, F. & Prato, M. Preparation, functionalization and characterization of engineered carbon nanodots. Nat. Protoc. 14, 2931–2953 (2019). doi: 10.1038/s41596-019-0207-x
[29] Baker, S. N. & Baker, G. A. Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010). doi: 10.1002/anie.200906623
[30] Arcudi, F., Đorđević, L. & Prato, M. Synthesis, separation, and characterization of small and highly fluorescent nitrogen-doped carbon NanoDots. Angew. Chem. Int. Ed. 55, 2107–2112 (2016). doi: 10.1002/anie.201510158
[31] Arcudi, F., Đorđević, L. & Prato, M. Design, synthesis, and functionalization strategies of tailored carbon nanodots. Acc. Chem. Res. 52, 2070–2079 (2019). doi: 10.1021/acs.accounts.9b00249
[32] Rigodanza, F. et al. Snapshots into carbon dots formation through a combined spectroscopic approach. Nat. Commun. 12, 2640 (2021). doi: 10.1038/s41467-021-22902-w
[33] Song, Y. B. et al. Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C 3, 5976–5984 (2015). doi: 10.1039/C5TC00813A
[34] Schneider, J. et al. Molecular fluorescence in citric acid-based carbon dots. J. Phys. Chem. C 121, 2014–2022 (2017). doi: 10.1021/acs.jpcc.6b12519
[35] Krysmann, M. J. et al. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 134, 747–750 (2012). doi: 10.1021/ja204661r
[36] Li, X. M. et al. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci. Rep. 4, 4976 (2014). doi: 10.1038/srep04976
[37] Hu, Y. P. et al. How do nitrogen-doped carbon dots generate from molecular precursors? An investigation of the formation mechanism and a solution-based large-scale synthesis. J. Mater. Chem. B 3, 5608–5614 (2015). doi: 10.1039/C5TB01005E
[38] Jiang, K. et al. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv. Mater. 30, 1800783 (2018). doi: 10.1002/adma.201800783
[39] Ding, H. et al. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 14, 1800612 (2018). doi: 10.1002/smll.201800612
[40] Yuan, F. L. et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 29, 1604436 (2017). doi: 10.1002/adma.201604436
[41] Tang, L. B. et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6, 5102–5110 (2012). doi: 10.1021/nn300760g
[42] Tang, L. B. et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano 8, 6312–6320 (2014). doi: 10.1021/nn501796r
[43] Miao, X. et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 30, 1704740 (2018). doi: 10.1002/adma.201704740
[44] Ðorđević, L. et al. Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nat. Commun. 9, 3442 (2018). doi: 10.1038/s41467-018-05561-2
[45] Xia, C. L. et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv. Sci. 6, 1901316 (2019). doi: 10.1002/advs.201901316
[46] Das, A. et al. On the molecular origin of photoluminescence of nonblinking carbon dot. J. Phys. Chem. C 121, 9634–9641 (2017). doi: 10.1021/acs.jpcc.7b02433
[47] Liu, X. H. et al. Structure and photoluminescence evolution of nanodots during pyrolysis of citric acid: from molecular nanoclusters to carbogenic nanoparticles. J. Mater. Chem. C 5, 10302–10312 (2017). doi: 10.1039/C7TC03429F
[48] Zhang, J. et al. One-pot gram-scale synthesis of nitrogen and sulfur embedded organic dots with distinctive fluorescence behaviors in free and aggregated states. Chem. Mater. 28, 4367–4374 (2016). doi: 10.1021/acs.chemmater.6b01360
[49] Shi, L. et al. Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores. Nanoscale 8, 14374–14378 (2016). doi: 10.1039/C6NR00451B
[50] Xiong, Y. et al. Influence of molecular fluorophores on the research field of chemically synthesized carbon dots. Nano Today 23, 124–139 (2018). doi: 10.1016/j.nantod.2018.10.010
[51] Vallan, L. et al. Supramolecular-enhanced charge transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots. J. Am. Chem. Soc. 140, 12862–12869 (2018). doi: 10.1021/jacs.8b06051
[52] Jiang, K. et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed. 54, 5360–5363 (2015). doi: 10.1002/anie.201501193
[53] Holá, K. et al. Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano 11, 12402–12410 (2017). doi: 10.1021/acsnano.7b06399
[54] Wei, S. M. et al. ZnCl2 enabled synthesis of highly crystalline and emissive carbon dots with exceptional capability to generate O2·–. Matter 2, 495–506 (2020). doi: 10.1016/j.matt.2019.12.029
[55] Bourlinos, A. B. et al. Gd(Ⅲ)-doped carbon dots as a dual fluorescent-MRI probe. J. Mater. Chem. 22, 23327–23330 (2012). doi: 10.1039/c2jm35592b
[56] Li, F. et al. Selenium-doped carbon quantum dots for free-radical scavenging. Angew. Chem. Int. Ed. 56, 9910–9914 (2017). doi: 10.1002/anie.201705989
[57] Liu, J. J. et al. One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis. Nanoscale 9, 7135–7142 (2017). doi: 10.1039/C7NR02128C
[58] Lin, C. J. et al. High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. Small 15, 1902641 (2019). doi: 10.1002/smll.201902641
[59] Wang, Q. et al. Single atomically anchored cobalt on carbon quantum dots as efficient photocatalysts for visible light-promoted oxidation reactions. Chem. Mater. 32, 734–743 (2020). doi: 10.1021/acs.chemmater.9b03708
[60] Chen, B. B. et al. Highly selective detection of 2, 4, 6-trinitrophenol by using newly developed terbium-doped blue carbon dots. Analyst 141, 2676–2681 (2016). doi: 10.1039/C5AN02569A
[61] Guo, J. D. et al. One-pot synthesis and lubricity of fluorescent carbon dots applied on PCL-PEG-PCL hydrogel. J. Biomater. Sci., Polym. Ed. 29, 1549–1565 (2018). doi: 10.1080/09205063.2018.1470736
[62] Ye, Y. W. et al. An effective corrosion inhibitor of N doped carbon dots for Q235 steel in 1 M HCl solution. J. Alloy. Compd. 815, 152338 (2020). doi: 10.1016/j.jallcom.2019.152338
[63] Zhao, S. J. et al. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl. Mater. Interfaces 7, 17054–17060 (2015). doi: 10.1021/acsami.5b03228
[64] Li, F. et al. Highly fluorescent chiral N-S-Doped carbon dots from cysteine: affecting cellular energy metabolism. Angew. Chem. Int. Ed. 57, 2377–2382 (2018). doi: 10.1002/anie.201712453
[65] Li, G. L. et al. Facile and sensitive fluorescence sensing of alkaline phosphatase activity with photoluminescent carbon dots based on inner filter effect. Anal. Chem. 88, 2720–2726 (2016). doi: 10.1021/acs.analchem.5b04193
[66] Gao, G. et al. On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots. Carbon 134, 232–243 (2018). doi: 10.1016/j.carbon.2018.02.063