[1] von Neumann, J. & Wigner, E. P. Über merkwürdige diskrete Eigenwerte. Physikalische Z. 30, 465–467 (1929).
[2] Capasso, F. et al. Observation of an electronic bound state above a potential well. Nature 358, 565–567 (1992). doi: 10.1038/358565a0
[3] Herrick, D. R. Construction of bound states in the continuum for epitaxial heterostructure superlattices. Phys. B+C 85, 44–50 (1976). doi: 10.1016/0378-4363(76)90097-8
[4] Stillinger, F. H. Potentials supporting positive-energy eigenstates and their application to semiconductor heterostructures. Phys. B+C 85, 270–276 (1976). doi: 10.1016/0378-4363(76)90021-8
[5] Parker, R. Resonance effects in wake shedding from parallel plates: some experimental observations. J. Sound Vib. 4, 62–72 (1966). doi: 10.1016/0022-460X(66)90154-4
[6] Linton, C. M. & McIver, P. Embedded trapped modes in water waves and acoustics. Wave Motion 45, 16–29 (2007). doi: 10.1016/j.wavemoti.2007.04.009
[7] Lepetit, T. et al. Resonance continuum coupling in high-permittivity dielectric metamaterials. Phys. Rev. B 82, 195307 (2010). doi: 10.1103/PhysRevB.82.195307
[8] Lepetit, T. & Kanté, B. Controlling multipolar radiation with symmetries for electromagnetic bound states in the continuum. Phys. Rev. B 90, 241103 (2014). doi: 10.1103/PhysRevB.90.241103
[9] Marinica, D. C., Borisov, A. G. & Shabanov, S. V. Bound states in the continuum in photonics. Phys. Rev. Lett. 100, 183902 (2008). doi: 10.1103/PhysRevLett.100.183902
[10] Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011). doi: 10.1103/PhysRevLett.107.183901
[11] Weimann, S. et al. Compact surface fano states embedded in the continuum of waveguide arrays. Phys. Rev. Lett. 111, 240403 (2013). doi: 10.1103/PhysRevLett.111.240403
[12] Monticone, F. & Alù, A. Embedded photonic eigenvalues in 3D nanostructures. Phys. Rev. Lett. 112, 213903 (2014). doi: 10.1103/PhysRevLett.112.213903
[13] Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013). doi: 10.1038/nature12289
[14] Hsu, C. W. et al. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016). doi: 10.1038/natrevmats.2016.48
[15] Koshelev, K., Bogdanov, A. & Kivshar, Y. Engineering with bound states in the continuum. Opt. Photonics N. 31, 38–45 (2020).
[16] Liang, Y. et al. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett. 20, 6351–6356 (2020). doi: 10.1021/acs.nanolett.0c01752
[17] Jain, A. et al. Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms. Adv. Opt. Mater. 3, 1431–1438 (2015). doi: 10.1002/adom.201500222
[18] Fedotov, V. A. et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007). doi: 10.1103/PhysRevLett.99.147401
[19] Koshelev, K. et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 121, 193903 (2018). doi: 10.1103/PhysRevLett.121.193903
[20] Liu, Z. J. et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett. 123, 253901 (2019). doi: 10.1103/PhysRevLett.123.253901
[21] Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 13, 390–396 (2019). doi: 10.1038/s41566-019-0394-6
[22] Leitis, A. et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci. Adv. 5, eaaw2871 (2019).
[23] Rybin, M. V. et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett. 119, 243901 (2017). doi: 10.1103/PhysRevLett.119.243901
[24] Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020). doi: 10.1126/science.aaz3985
[25] Mylnikov, V. et al. Lasing action in single subwavelength particles supporting supercavity modes. ACS Nano 14, 7338–7346 (2020). doi: 10.1021/acsnano.0c02730
[26] Jin, J. C. et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature 574, 501–504 (2019). doi: 10.1038/s41586-019-1664-7
[27] Yin, X. F. et al. Observation of topologically enabled unidirectional guided resonances. Nature 580, 467–471 (2020). doi: 10.1038/s41586-020-2181-4
[28] Ha, S. T. et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol. 13, 1042–1047 (2018). doi: 10.1038/s41565-018-0245-5
[29] Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020). doi: 10.1126/science.aba4597
[30] Wu, M. F. et al. Room-temperature lasing in colloidal nanoplatelets via mie-resonant bound states in the continuum. Nano Lett. 20, 6005–6011 (2020). doi: 10.1021/acs.nanolett.0c01975
[31] Carletti, L. et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys. Rev. Lett. 121, 033903 (2018). doi: 10.1103/PhysRevLett.121.033903
[32] Bernhardt, N. et al. Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers. Nano Lett. 20, 5309–5314 (2020). doi: 10.1021/acs.nanolett.0c01603
[33] Gorkunov, M. V., Antonov, A. A. & Kivshar, Y. S. Metasurfaces with maximum chirality empowered by bound states in the continuum. Phys. Rev. Lett. 125, 093903 (2020). doi: 10.1103/PhysRevLett.125.093903
[34] Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018). doi: 10.1126/science.aas9768
[35] Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017). doi: 10.1038/nature20799
[36] Bosman, M. et al. Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007). doi: 10.1088/0957-4484/18/16/165505
[37] Dong, Z. G. et al. Fabrication of suspended metal–dielectric–metal plasmonic nanostructures. Nanotechnology 25, 135303 (2014). doi: 10.1088/0957-4484/25/13/135303
[38] Duan, H. G. et al. Nanoplasmonics: classical down to the nanometer scale. Nano Lett. 12, 1683–1689 (2012). doi: 10.1021/nl3001309
[39] Kociak, M. & Stéphan, O. Mapping plasmons at the nanometer scale in an electron microscope. Chem. Soc. Rev. 43, 3865–3883 (2014). doi: 10.1039/c3cs60478k
[40] García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010). doi: 10.1103/RevModPhys.82.209
[41] Zheng, S. J. et al. Giant enhancement of cathodoluminescence of monolayer transitional metal dichalcogenides semiconductors. Nano Lett. 17, 6475–6480 (2017). doi: 10.1021/acs.nanolett.7b03585
[42] Losquin, A. & Kociak, M. Link between cathodoluminescence and electron energy loss spectroscopy and the radiative and full electromagnetic local density of states. ACS Photonics 2, 1619–1627 (2015). doi: 10.1021/acsphotonics.5b00416
[43] Coenen, T. et al. Cathodoluminescence microscopy: optical imaging and spectroscopy with deep-subwavelength resolution. MRS Bull. 40, 359–365 (2015). doi: 10.1557/mrs.2015.64
[44] Knight, M. W. et al. Aluminum plasmonic nanoantennas. Nano Lett. 12, 6000–6004 (2012). doi: 10.1021/nl303517v
[45] Bischak, C. G. et al. Cathodoluminescence-activated nanoimaging: noninvasive near-field optical microscopy in an electron microscope. Nano Lett. 15, 3383–3390 (2015). doi: 10.1021/acs.nanolett.5b00716
[46] Han, T. Y. et al. Reveal and control of chiral cathodoluminescence at subnanoscale. Nano Lett. 18, 567–572 (2018). doi: 10.1021/acs.nanolett.7b04705
[47] Sannomiya, T. et al. Cathodoluminescence phase extraction of the coupling between nanoparticles and surface plasmon polaritons. Nano Lett. 20, 592–598 (2020). doi: 10.1021/acs.nanolett.9b04335
[48] Coenen, T. & Polman, A. Optical properties of single plasmonic holes probed with local electron beam excitation. ACS Nano 8, 7350–7358 (2014). doi: 10.1021/nn502469r
[49] Zu, S. et al. Imaging of plasmonic chiral radiative local density of states with cathodoluminescence nanoscopy. Nano Lett. 19, 775–780 (2019). doi: 10.1021/acs.nanolett.8b03850
[50] Coenen, T., van de Groep, J. & Polman, A. Resonant modes of single silicon nanocavities excited by electron irradiation. ACS Nano 7, 1689–1698 (2013). doi: 10.1021/nn3056862
[51] van de Groep, J. et al. Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles. Optica 3, 93–99 (2016). doi: 10.1364/OPTICA.3.000093
[52] Marino, G. et al. Cathodoluminescence imaging spectroscopy of single and dimer AlGaAs nano-disks. In European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, CK_13_2 (OPTICA Publishing Gr) (2017) https://www.osapublishing.org/abstract.cfm?uri=CLEO_Europe-2017-CK_13_2.
[53] Peng, S. Y. et al. Probing the band structure of topological silicon photonic lattices in the visible spectrum. Phys. Rev. Lett. 122, 117401 (2019). doi: 10.1103/PhysRevLett.122.117401
[54] Sapienza, R. et al. Deep-subwavelength imaging of the modal dispersion of light. Nat. Mater. 11, 781–787 (2012). doi: 10.1038/nmat3402
[55] Murai, S. et al. Bound states in the continuum in the visible emerging from out-of-plane magnetic dipoles. ACS Photonics 7, 2204–2210 (2020). doi: 10.1021/acsphotonics.0c00723
[56] Das, P., Chini, T. K. & Pond, J. Probing higher order surface plasmon modes on individual truncated tetrahedral gold nanoparticle using cathodoluminescence imaging and spectroscopy combined with FDTD simulations. J. Phys. Chem. C 116, 15610–15619 (2012). doi: 10.1021/jp3047533
[57] Dong, Z. G. et al. Ultraviolet interband plasmonics with Si nanostructures. Nano Lett. 19, 8040–8048 (2019). doi: 10.1021/acs.nanolett.9b03243
[58] Bosman, M. & Keast, V. J. Optimizing EELS acquisition. Ultramicroscopy 108, 837–846 (2008). doi: 10.1016/j.ultramic.2008.02.003
[59] Dong, Z. G. et al. Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space. Nano Lett. 17, 7620–7628 (2017). doi: 10.1021/acs.nanolett.7b03613