[1] Vacanti, J. P. & Langer, R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. The Lancet 354, S32-S34 (1999). doi: 10.1016/S0140-6736(99)90247-7
[2] Lanza, R. et al. Principles of Tissue Engineering. 5th edn. (San Diego: Academic Press, 2020).
[3] O'Brien, F. J. Biomaterials & scaffolds for tissue engineering. Materials Today 14, 88-95 (2011). doi: 10.1016/S1369-7021(11)70058-X
[4] Lu, T., Li, Y., & Chen, T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. International journal of nanomedicine 8, 337-350 (2013).
[5] Guo, B. L. & Ma, P. X. Conducting polymers for tissue engineering. Biomacromolecules 19, 1764-1782 (2018). doi: 10.1021/acs.biomac.8b00276
[6] Roseti, L. et al. Scaffolds for bone tissue engineering: state of the art and new perspectives. Materials Science and Engineering:C 78, 1246-1262 (2017). doi: 10.1016/j.msec.2017.05.017
[7] Lavik, E. & Langer, R. Tissue engineering: current state and perspectives. Applied Microbiology and Biotechnology 65, 1-8 (2004).
[8] Merten, O. W. Advances in cell culture: anchorage dependence. Philosophical Transactions of the Royal Society B:Biological Sciences 370, 20140040 (2015). doi: 10.1098/rstb.2014.0040
[9] Chan, B. P. & Leong, K. W. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European Spine Journal 17, 467-479 (2008). doi: 10.1007/s00586-008-0745-3
[10] Muschler, G. F., Nakamoto, C. & Griffith, L. G. Engineering principles of clinical cell-based tissue engineering. The Journal of Bone & Joint Surgery 86, 1541-1558 (2004).
[11] Chung, S., Gamcsik, M. P. & King, M. W. Novel scaffold design with multi-grooved PLA fibers. Biomedical Materials 6, 045001 (2011). doi: 10.1088/1748-6041/6/4/045001
[12] Pluta, K., Malina, D. & Sobczak-Kupiec, A. Scaffolds for tissue engineering. Czasopismo Techniczne. Chemia 112, 89-97 (2015).
[13] Migliaresi, C. & Motta, A. Scaffolds for Tissue Engineering: Biological Design, Materials, and Fabrication. (Singapore: Pan Stanford Publishing, 2014).
[14] Liu, X. H. & Ma, P. X. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30, 4094-4103 (2009). doi: 10.1016/j.biomaterials.2009.04.024
[15] Sin, D. et al. Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Materials Science and Engineering:C 30, 78-85 (2010). doi: 10.1016/j.msec.2009.09.002
[16] Amensag, S. & McFetridge, P. S. Tuning scaffold mechanics by laminating native extracellular matrix membranes and effects on early cellular remodeling. Journal of Biomedical Materials Research Part A 102, 1325-1333 (2014). doi: 10.1002/jbm.a.34791
[17] Yang, S. et al. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engineering 7, 679-689 (2001). doi: 10.1089/107632701753337645
[18] Do, A. V. et al. 3D printing of scaffolds for tissue regeneration applications. Advanced Healthcare Materials 4, 1742-1762 (2015). doi: 10.1002/adhm.201500168
[19] Zhao, P. et al. Fabrication of scaffolds in tissue engineering: a review. Frontiers of Mechanical Engineering 13, 107-119 (2018). doi: 10.1007/s11465-018-0496-8
[20] Ng, W. L. et al. Deep learning for fabrication and maturation of 3D bioprinted tissues and organs. Virtual and Physical Prototyping 15, 340-358 (2020). doi: 10.1080/17452759.2020.1771741
[21] Ng, W. L., Chua, C. K. & Shen, Y. F. Print me an organ! Why we are not there yet. Progress in Polymer Science 97, 101145 (2019). doi: 10.1016/j.progpolymsci.2019.101145
[22] Yu, C. L. & Jiang, J. C. A perspective on using machine learning in 3D bioprinting. International Journal of Bioprinting 6, 253 (2020).
[23] Iandolo, D. et al. Nanoscale investigation in 3D scaffolds of cell-material interactions for tissue-engineering. Preprint at https://www.biorxiv.org/content/10.1101/383117v1 (2018).
[24] Klein, F. et al. Two-component polymer scaffolds for controlled three-dimensional cell culture. Advanced Materials 23, 1341-1345 (2011). doi: 10.1002/adma.201004060
[25] Hippler, M. et al. Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds. Science Advances 6, eabc2648 (2020). doi: 10.1126/sciadv.abc2648
[26] ISO. ISO/ASTM 52910.2(en) Standard practices — Guidelines for for design for additive manufacturing. Rome: ISO, 2016.
[27] Chia, H. N. & Wu, B. M. Recent advances in 3D printing of biomaterials. Journal of Biological Engineering 9, 4 (2015). doi: 10.1186/s13036-015-0001-4
[28] Lee, J. Y., An, J. & Chua, C. K. Fundamentals and applications of 3D printing for novel materials. Applied Materials Today 7, 120-133 (2017). doi: 10.1016/j.apmt.2017.02.004
[29] Lin, W., Chen, D. H. & Chen, S. C. Emerging micro-additive manufacturing technologies enabled by novel optical methods. Photonics Research 8, 1827-1842 (2020). doi: 10.1364/PRJ.404334
[30] Gibson, I. et al. Additive Manufacturing Technologies. 3rd edn. (Cham: Springer, 2021).
[31] Gebhardt, A. & Hötter, J. S. Additive Manufacturing: 3D Printing for Prototyping and Manufacturing. (Munich: Hanser Publishers, 2016).
[32] Lewis, J. A. Direct ink writing of 3D functional materials. Advanced Functional Materials 16, 2193-2204 (2006). doi: 10.1002/adfm.200600434
[33] Skylar-Scott, M. A., Gunasekaran, S. & Lewis, J. A. Laser-assisted direct ink writing of planar and 3D metal architectures. Proceedings of the National Academy of Sciences of the United States of America 113, 6137-6142 (2016). doi: 10.1073/pnas.1525131113
[34] Yap, Y. L. et al. Material jetting additive manufacturing: an experimental study using designed metrological benchmarks. Precision Engineering 50, 275-285 (2017). doi: 10.1016/j.precisioneng.2017.05.015
[35] Moore, J. P. & Williams, C. B. Fatigue properties of parts printed by PolyJet material jetting. Rapid Prototyping Journal 21, 675-685 (2015). doi: 10.1108/RPJ-03-2014-0031
[36] Mahajan, A., Frisbie, C. D. & Francis, L. F. Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines. ACS Applied Materials & Interfaces 5, 4856-4864 (2013).
[37] Mette, A. et al. Metal aerosol jet printing for solar cell metallization. Progress in Photovoltaics:Research and Applications 15, 621-627 (2007). doi: 10.1002/pip.759
[38] Secor, E. B. Principles of aerosol jet printing. Flexible and Printed Electronics 3, 035002 (2018). doi: 10.1088/2058-8585/aace28
[39] Wei, C. & Li, L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual and Physical Prototyping 16, 347-371 (2021). doi: 10.1080/17452759.2021.1928520
[40] Xie, B. et al. Biodegradation, antibacterial performance, and cytocompatibility of a novel ZK30-Cu-Mn biomedical alloy produced by selective laser melting. International Journal of Bioprinting 7, 300 (2021).
[41] Ng, W. L. et al. Vat polymerization-based bioprinting—process, materials, applications and regulatory challenges. Biofabrication 12, 022001 (2020). doi: 10.1088/1758-5090/ab6034
[42] Zhang, J. M. et al. Digital light processing based three-dimensional printing for medical applications. International Journal of Bioprinting 6, 242 (2019).
[43] Melchels, F. P. W., Feijen, J. & Grijpma, D. W. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31, 6121-6130 (2010). doi: 10.1016/j.biomaterials.2010.04.050
[44] Bártolo, P. J. Stereolithography: Materials, Processes and Applications. (Boston: Springer, 2011).
[45] Skoog, S. A., Goering, P. L. & Narayan, R. J. Stereolithography in tissue engineering. Journal of Materials Science:Materials in Medicine 25, 845-856 (2014). doi: 10.1007/s10856-013-5107-y
[46] Kruth, J. P. et al. Lasers and materials in selective laser sintering. Assembly Automation 23, 357-371 (2003). doi: 10.1108/01445150310698652
[47] Agarwala, M. et al. Direct selective laser sintering of metals. Rapid Prototyping Journal 1, 26-36 (1995). doi: 10.1108/13552549510078113
[48] Mazzoli, A. Selective laser sintering in biomedical engineering. Medical & Biological Engineering & Computing 51, 245-256 (2013).
[49] Schafer, K. J. et al. Two-photon absorption cross-sections of common photoinitiators. Journal of Photochemistry and Photobiology A:Chemistry 162, 497-502 (2004). doi: 10.1016/S1010-6030(03)00394-0
[50] Gittard, S. D. et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomedical Optics Express 2, 3167-3178 (2011). doi: 10.1364/BOE.2.003167
[51] Ziaee, M. & Crane, N. B. Binder jetting: a review of process, materials, and methods. Additive Manufacturing 28, 781-801 (2019). doi: 10.1016/j.addma.2019.05.031
[52] Lebel, L. L. et al. Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils. Advanced Materials 22, 592-596 (2010). doi: 10.1002/adma.200902192
[53] Farahani, R. D., Dubé, M. & Therriault, D. Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Advanced Materials 28, 5794-5821 (2016). doi: 10.1002/adma.201506215
[54] Wu, T. et al. Additively manufacturing high-performance bismaleimide architectures with ultraviolet-assisted direct ink writing. Materials & Design 180, 107947 (2019).
[55] Guo, Y. X. et al. Direct ink writing of high performance architectured polyimides with low dimensional shrinkage. Advanced Engineering Materials 21, 1801314 (2019). doi: 10.1002/adem.201801314
[56] Ashwin, A. J. & Jafferson, J. M. State of the art direct ink writing (DIW) and experimental trial on DIW of HAp bio-ceramics. Materials Today:Proceedings 46, 1298-1307 (2021). doi: 10.1016/j.matpr.2021.02.396
[57] Zhu, J. Z. et al. 3D printing of multi-scalable structures via high penetration near-infrared photopolymerization. Nature Communications 11, 3462 (2020). doi: 10.1038/s41467-020-17251-z
[58] Liu, W. F., Song, H. W. & Huang, C. G. Maximizing mechanical properties and minimizing support material of PolyJet fabricated 3D lattice structures. Additive Manufacturing 35, 101257 (2020). doi: 10.1016/j.addma.2020.101257
[59] Yusupov, V. et al. Laser-induced forward transfer hydrogel printing: a defined route for highly controlled process. International Journal of Bioprinting 6, 271 (2020).
[60] Ionita, C. N. et al. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing. Proceedings of 9038 SPIE, Medical Imaging 2014: Biomedical Applications in Molecular, Structural, and Functional Imaging. San Diego, California, United States: SPIE, 2014, 90380M.
[61] Pugalendhi, A., Ranganathan, R. & Chandrasekaran, M. Effect of process parameters on mechanical properties of VeroBlue material and their optimal selection in PolyJet technology. The International Journal of Advanced Manufacturing Technology 108, 1049-1059 (2019).
[62] Ibrahim, D. et al. Dimensional error of selective laser sintering, three-dimensional printing and PolyJet™ models in the reproduction of mandibular anatomy. Journal of Cranio-Maxillofacial Surgery 37, 167-173 (2009). doi: 10.1016/j.jcms.2008.10.008
[63] Gaynor, A. T. et al. Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing. Journal of Manufacturing Science and Engineering 136, 061015 (2014). doi: 10.1115/1.4028439
[64] Meisel, N. A., Elliott, A. M. & Williams, C. B. A procedure for creating actuated joints via embedding shape memory alloys in PolyJet 3D printing. Journal of Intelligent Material Systems and Structures 26, 1498-1512 (2015). doi: 10.1177/1045389X14544144
[65] Childs, E. H. et al. Additive assembly for polyjet-based multi-material 3D printed microfluidics. Journal of Microelectromechanical Systems 29, 1094-1096 (2020). doi: 10.1109/JMEMS.2020.3003858
[66] Hull, C. W. The birth of 3D printing. Research-Technology Management 58, 25-30 (2015).
[67] Gross, B. C. et al. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical Chemistry 86, 3240-3253 (2014). doi: 10.1021/ac403397r
[68] He, Y. et al. Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis 28, 1658-1678 (2016). doi: 10.1002/elan.201600043
[69] Bártolo, P. J. & Gibson, I. History of stereolithographic processes. in Stereolithography: Materials, Processes and Applications (ed Bártolo, P. J.) (Boston: Springer, 2011), 37-56.
[70] Waldbaur, A. et al. Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Analytical Methods 3, 2681-2716 (2011). doi: 10.1039/c1ay05253e
[71] Gizmo 3D Printers. The differences between bottom-up resin 3D printers and top-down resin 3D printers. (2020). at https://www.gizmo3dprinters.com.au/post/the-differences-between-bottom-up-resin-3d-printers-and-top-down-resin-3d-printers.
[72] Han, L. H. et al. Projection microfabrication of three-dimensional scaffolds for tissue engineering. Journal of Manufacturing Science and Engineering 130, 021005 (2008). doi: 10.1115/1.2823079
[73] Choi, J. W. et al. Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. Journal of Materials Processing Technology 209, 5494-5503 (2009). doi: 10.1016/j.jmatprotec.2009.05.004
[74] Pan, Y. Y., Zhou, C. & Chen, Y. Rapid manufacturing in minutes: the development of a mask projection stereolithography process for high-speed fabrication. Proceedings of the ASME 2012 International Manufacturing Science and Engineering Conference Collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing. Notre Dame, Indiana, USA: American Society of Mechanical Engineers, 2012, MSEC2012-7232.
[75] Lu, Y. et al. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. Journal of Biomedical Materials Research Part A 77A, 396-405 (2006).
[76] Ho, C. M. B. et al. Femtosecond-laser-based 3D printing for tissue engineering and cell biology applications. ACS Biomaterials Science & Engineering 3, 2198-2214 (2017).
[77] Sun, C. et al. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors and Actuators A:Physical 121, 113-120 (2005). doi: 10.1016/j.sna.2004.12.011
[78] Zheng, X. Y. et al. Multiscale metallic metamaterials. Nature Materials 15, 1100-1106 (2016). doi: 10.1038/nmat4694
[79] Ge, Q. et al. Projection micro stereolithography based 3D printing and its applications. International Journal of Extreme Manufacturing 2, 022004 (2020). doi: 10.1088/2631-7990/ab8d9a
[80] Yang, Y. et al. 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Advanced Materials 30, 1704912 (2018). doi: 10.1002/adma.201704912
[81] Bhanvadia, A. A. et al. High-resolution stereolithography using a static liquid constrained interface. Communications Materials 2, 41 (2021). doi: 10.1038/s43246-021-00145-y
[82] Walker, D. A., Hedrick, J. L. & Mirkin, C. A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366, 360-364 (2019). doi: 10.1126/science.aax1562
[83] Emami, M. M., Barazandeh, F. & Yaghmaie, F. Scanning-projection based stereolithography: method and structure. Sensors and Actuators A:Physical 218, 116-124 (2014). doi: 10.1016/j.sna.2014.08.002
[84] Deckard, C. R. & McClure, P. F. Selective laser sintering. (Doctoral dissertation, The University of Texas at Austin, 1988).
[85] Williams, J. D. & Deckard, C. R. Advances in modeling the effects of selected parameters on the SLS process. Rapid Prototyping Journal 4, 90-100 (1998). doi: 10.1108/13552549810210257
[86] Vaezi, M., Seitz, H. & Yang, S. F. A review on 3D micro-additive manufacturing technologies. The International Journal of Advanced Manufacturing Technology 67, 1721-1754 (2013). doi: 10.1007/s00170-012-4605-2
[87] Vyatskikh, A. et al. Additive manufacturing of 3D nano-architected metals. Nature Communications 9, 593 (2018). doi: 10.1038/s41467-018-03071-9
[88] Behera, D. et al. Current challenges and potential directions towards precision microscale additive manufacturing–Part IV: future perspectives. Precision Engineering 68, 197-205 (2021). doi: 10.1016/j.precisioneng.2020.12.014
[89] Chizari, S. et al. Current challenges and potential directions towards precision microscale additive manufacturing–Part III: energy induced deposition and hybrid electrochemical processes. Precision Engineering 68, 174-186 (2021). doi: 10.1016/j.precisioneng.2020.12.013
[90] Roy, N. K. et al. A novel microscale selective laser sintering (μ-SLS) process for the fabrication of microelectronic parts. Microsystems & Nanoengineering 5, 64 (2019).
[91] Pham, D. T. & Gault, R. S. A comparison of rapid prototyping technologies. International Journal of Machine Tools and Manufacture 38, 1257-1287 (1998). doi: 10.1016/S0890-6955(97)00137-5
[92] Kauppila, I. The best SLS 3D printers in 2021 – buyer’s guide. (2022). at https://all3dp.com/1/best-sls-3d-printer-desktop-industrial/#section-industrial-sls-3d-printers.
[93] Chizari, S., Shaw, L. A. & Hopkins, J. B. Simultaneous printing and deformation of microsystems via two-photon lithography and holographic optical tweezers. Materials Horizons 6, 350-355 (2019). doi: 10.1039/C8MH01100A
[94] Guss, G. M. et al. Nanoscale surface tracking of laser material processing using phase shifting diffraction interferometry. Optics Express 22, 14493-14504 (2014). doi: 10.1364/OE.22.014493
[95] Pascall, A. J. et al. Light-Directed electrophoretic deposition: a new additive manufacturing technique for arbitrarily patterned 3D composites. Advanced Materials 26, 2252-2256 (2014). doi: 10.1002/adma.201304953
[96] Takai, T., Nakao, H. & Iwata, F. Three-dimensional microfabrication using local electrophoresis deposition and a laser trapping technique. Optics Express 22, 28109-28117 (2014). doi: 10.1364/OE.22.028109
[97] Mattle, T. et al. Laser induced forward transfer aluminum layers: process investigation by time resolved imaging. Applied Surface Science 258, 9352-9354 (2012). doi: 10.1016/j.apsusc.2011.08.113
[98] Askari, M. Metamaterial fabrication using combined multiphoton polymerization and optical trapping. PhD thesis, University of Nottingham, Nottingham, 2017.
[99] Forman, D. L., Cole, M. C. & McLeod, R. R. Radical diffusion limits to photoinhibited superresolution lithography. Physical Chemistry Chemical Physics 15, 14862-14867 (2013). doi: 10.1039/c3cp51512e
[100] Rumi, M. et al. Two-photon absorbing materials and two-photon-induced chemistry. in Photoresponsive Polymers I (eds Marder, S. R. & Lee, K. S.) (Berlin: Springer, 2008), 1-95.
[101] Fischer, J. et al. Three-dimensional multi-photon direct laser writing with variable repetition rate. Optics Express 21, 26244-26260 (2013). doi: 10.1364/OE.21.026244
[102] Malinauskas, M. et al. Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers. Lithuanian Journal of Physics 50, 201-207 (2010). doi: 10.3952/lithjphys.50203
[103] Kawata, S. et al. Finer features for functional microdevices. Nature 412, 697-698 (2001). doi: 10.1038/35089130
[104] Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics Letters 22, 132-134 (1997). doi: 10.1364/OL.22.000132
[105] Farsari, M. et al. Two-photon polymerization of an Eosin Y-sensitized acrylate composite. Journal of Photochemistry and Photobiology A:Chemistry 181, 132-135 (2006). doi: 10.1016/j.jphotochem.2005.11.025
[106] Lim, T. W., Park, S. H. & Yang, D. Y. Contour offset algorithm for precise patterning in two-photon polymerization. Microelectronic Engineering 77, 382-388 (2005). doi: 10.1016/j.mee.2005.01.022
[107] Pearre, B. W. et al. Fast micron-scale 3D printing with a resonant-scanning two-photon microscope. Additive Manufacturing 30, 100887 (2019). doi: 10.1016/j.addma.2019.100887
[108] Kato, J. I. et al. Multiple-spot parallel processing for laser micronanofabrication. Applied Physics Letters 86, 044102 (2005). doi: 10.1063/1.1855404
[109] Kelemen, L., Valkai, S. & Ormos, P. Parallel photopolymerisation with complex light patterns generated by diffractive optical elements. Optics Express 15, 14488-14497 (2007). doi: 10.1364/OE.15.014488
[110] Zandrini, T. et al. Multi-foci laser microfabrication of 3D polymeric scaffolds for stem cell expansion in regenerative medicine. Scientific Reports 9, 11761 (2019). doi: 10.1038/s41598-019-48080-w
[111] Maibohm, C. et al. Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications. Scientific Reports 10, 8740 (2020). doi: 10.1038/s41598-020-64955-9
[112] Cheng, J. Y. et al. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device. Optics Letters 40, 4875-4878 (2015). doi: 10.1364/OL.40.004875
[113] Lee, W. H. Binary synthetic holograms. Applied Optics 13, 1677-1682 (1974). doi: 10.1364/AO.13.001677
[114] Geng, Q. et al. Digital micromirror device-based two-photon microscopy for three-dimensional and random-access imaging. Optica 4, 674-677 (2017). doi: 10.1364/OPTICA.4.000674
[115] Geng, Q. et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nature Communications 10, 2179 (2019). doi: 10.1038/s41467-019-10249-2
[116] Bertsch, A. et al. Microstereophotolithography using a liquid crystal display as dynamic mask-generator. Microsystem Technologies 3, 42-47 (1997). doi: 10.1007/s005420050053
[117] Zhu, G. H. et al. Simultaneous spatial and temporal focusing of femtosecond pulses. Optics Express 13, 2153-2159 (2005). doi: 10.1364/OPEX.13.002153
[118] Oron, D., Tal, E. & Silberberg, Y. Scanningless depth-resolved microscopy. Optics Express 13, 1468-1476 (2005). doi: 10.1364/OPEX.13.001468
[119] Kim, D. & So, P. T. C. High-throughput three-dimensional lithographic microfabrication. Optics Letters 35, 1602-1604 (2010). doi: 10.1364/OL.35.001602
[120] Yih, J. N. et al. Temporal focusing-based multiphoton excitation microscopy via digital micromirror device. Optics Letters 39, 3134-3137 (2014). doi: 10.1364/OL.39.003134
[121] Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105-109 (2019). doi: 10.1126/science.aax8760
[122] Shusteff, M. et al. One-step volumetric additive manufacturing of complex polymer structures. Science Advances 3, eaao5496 (2017). doi: 10.1126/sciadv.aao5496
[123] Kelly, B. E. et al. Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075-1079 (2019). doi: 10.1126/science.aau7114
[124] Loterie, D., Delrot, P. & Moser, C. High-resolution tomographic volumetric additive manufacturing. Nature Communications 11, 852 (2020). doi: 10.1038/s41467-020-14630-4
[125] Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620-624 (2020). doi: 10.1038/s41586-020-3029-7
[126] Liu, C., Xia, Z. & Czernuszka, J. T. Design and development of three-dimensional scaffolds for tissue engineering. Chemical Engineering Research and Design 85, 1051-1064 (2007). doi: 10.1205/cherd06196
[127] Hollister, S. J. Porous scaffold design for tissue engineering. Nature Materials 4, 518-524 (2005). doi: 10.1038/nmat1421
[128] Melchels, F. P. W. et al. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31, 6909-6916 (2010). doi: 10.1016/j.biomaterials.2010.05.068
[129] Trachtenberg, J. E., Kasper, F. K. & Mikos, A. G. Polymer scaffold fabrication. in Principles of Tissue Engineering 4th edn (eds Lanza, R., Langer, R. & Vacanti, J.) (Amsterdam: Academic Press, 2014), 423-440.
[130] Antonov, E. N. et al. Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering. Advanced Materials 17, 327-330 (2005). doi: 10.1002/adma.200400838
[131] Nag, S., Banerjee, R. & Fraser, H. L. A novel combinatorial approach for understanding microstructural evolution and its relationship to mechanical properties in metallic biomaterials. Acta Biomaterialia 3, 369-376 (2007). doi: 10.1016/j.actbio.2006.08.005
[132] Yang, K. et al. Bio-functional design, application and trends in metallic biomaterials. International Journal of Molecular Sciences 19, 24 (2018).
[133] Wilson, J. Metallic biomaterials: state of the art and new challenges. in Fundamental Biomaterials: Metals (eds Balakrishnan, P., Sreekala, M. S. & Thomas, S.) (Duxford: Woodhead Publishing, 2018), 1-33.
[134] Ni, J. et al. Three-dimensional printing of metals for biomedical applications. Materials Today Bio 3, 100024 (2019). doi: 10.1016/j.mtbio.2019.100024
[135] Chou, D. T. et al. Novel processing of iron–manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomaterialia 9, 8593-8603 (2013). doi: 10.1016/j.actbio.2013.04.016
[136] Warnke, P. H. et al. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue Engineering Part C:Methods 15, 115-124 (2009).
[137] Ngo, T. D. et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites Part B:Engineering 143, 172-196 (2018). doi: 10.1016/j.compositesb.2018.02.012
[138] Zhang, W. Y., Tong, M. M. & Harrison, N. M. Resolution, Energy and time dependency on layer scaling in finite element modelling of laser beam powder bed fusion additive manufacturing. Additive Manufacturing 28, 610-620 (2019). doi: 10.1016/j.addma.2019.05.002
[139] Shahrubudin, N., Lee, T. C. & Ramlan, R. An overview on 3D printing technology: technological, materials, and applications. Procedia Manufacturing 35, 1286-1296 (2019). doi: 10.1016/j.promfg.2019.06.089
[140] Alvarez, K. & Nakajima, H. Metallic scaffolds for bone regeneration. Materials 2, 790-832 (2009). doi: 10.3390/ma2030790
[141] Lin, H. M. et al. Scaffold 3D-printed from metallic nanoparticles-containing ink simultaneously eradicates tumor and repairs tumor-associated bone defects. Small Methods 5, 2100536 (2021). doi: 10.1002/smtd.202100536
[142] Munir, K. S., Li, Y. & Wen, C. Metallic scaffolds manufactured by selective laser melting for biomedical applications. in Metallic Foam Bone: Processing, Modification and Characterization and Properties (ed Wen, C.) (Amsterdam: Woodhead Publishing, 2017), 1-23.
[143] Witte, F. et al. Cartilage repair on magnesium scaffolds used as a subchondral bone replacement. Materialwissenschaft und Werkstofftechnik 37, 504-508 (2006). doi: 10.1002/mawe.200600027
[144] Witte, F. et al. Biodegradable magnesium scaffolds: part II: peri-implant bone remodeling. Journal of Biomedical Materials Research Part A 81A, 757-765 (2007). doi: 10.1002/jbm.a.31293
[145] Bottino, M. C. et al. Processing, characterization, and in vitro/in vivo evaluations of powder metallurgy processed Ti-13Nb-13Zr alloys. Journal of Biomedical Materials Research Part A 88A, 689-696 (2009). doi: 10.1002/jbm.a.31912
[146] Long, W. J. & Scuderi, G. R. Porous tantalum cones for large metaphyseal tibial defects in revision total knee arthroplasty: a minimum 2-year follow-up. The Journal of Arthroplasty 24, 1086-1092 (2009). doi: 10.1016/j.arth.2008.08.011
[147] Wang, Y. et al. Superelastic cage implantation: a new technique for treating osteonecrosis of the femoral head with mid-term follow-ups. The Journal of Arthroplasty 24, 1006-1014 (2009). doi: 10.1016/j.arth.2008.07.010
[148] Zhang, L. C. et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scripta Materialia 65, 21-24 (2011). doi: 10.1016/j.scriptamat.2011.03.024
[149] Lashneva, V. V., Kryuchkov, Y. N. & Sokhan, S. V. Bioceramics based on aluminum oxide. Glass and Ceramics 55, 357-359 (1998). doi: 10.1007/BF02694271
[150] Barone, D. T. J., Raquez, J. M. & Dubois, P. Bone-guided regeneration: from inert biomaterials to bioactive polymer (nano)composites. Polymers for Advanced Technologies 22, 463-475 (2011). doi: 10.1002/pat.1845
[151] Rahaman, M. N. et al. Ceramics for prosthetic hip and knee joint replacement. Journal of the American Ceramic Society 90, 1965-1988 (2007). doi: 10.1111/j.1551-2916.2007.01725.x
[152] Lejeune, M. et al. Ink-jet printing of ceramic micro-pillar arrays. Journal of the European Ceramic Society 29, 905-911 (2009). doi: 10.1016/j.jeurceramsoc.2008.07.040
[153] Wu, L., Lin, L. J. & Qin, Y. X. Enhancement of cell ingrowth, proliferation, and early differentiation in a three-dimensional silicon carbide scaffold using low-intensity pulsed ultrasound. Tissue Engineering Part A 21, 53-61 (2015). doi: 10.1089/ten.tea.2013.0597
[154] Tripathi, G. & Basu, B. A porous hydroxyapatite scaffold for bone tissue engineering: physico-mechanical and biological evaluations. Ceramics International 38, 341-349 (2012). doi: 10.1016/j.ceramint.2011.07.012
[155] Shuai, C. et al. Graphene-reinforced mechanical properties of calcium silicate scaffolds by laser sintering. RSC Advances 4, 12782-12788 (2014). doi: 10.1039/C3RA47862A
[156] Dávila, J. L. et al. Fabrication of PCL/β-TCP scaffolds by 3D mini-screw extrusion printing. Journal of Applied Polymer Science 133, 43031 (2016).
[157] Son, J. S. et al. Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres. Journal of Controlled Release 153, 133-140 (2011). doi: 10.1016/j.jconrel.2011.03.010
[158] Ma, J., Wang, C. & Peng, K. W. Electrophoretic deposition of porous hydroxyapatite scaffold. Biomaterials 24, 3505-3510 (2003). doi: 10.1016/S0142-9612(03)00203-5
[159] Shao, H. P. et al. 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering. Ceramics International 45, 1163-1170 (2019). doi: 10.1016/j.ceramint.2018.09.300
[160] Scalera, F. et al. Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering. Ceramics International 40, 15455-15462 (2014). doi: 10.1016/j.ceramint.2014.06.117
[161] Chen, Z. W. et al. 3D printing of ceramics: a review. Journal of the European Ceramic Society 39, 661-687 (2019). doi: 10.1016/j.jeurceramsoc.2018.11.013
[162] Song, X. H. et al. Selective laser sintering of aliphatic-polycarbonate/hydroxyapatite composite scaffolds for medical applications. The International Journal of Advanced Manufacturing Technology 81, 15-25 (2015). doi: 10.1007/s00170-015-7135-x
[163] Lewis, J. A. Direct-write assembly of ceramics from colloidal inks. Current Opinion in Solid State and Materials Science 6, 245-250 (2002). doi: 10.1016/S1359-0286(02)00031-1
[164] Simon, J. L. et al. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. Journal of Biomedical Materials Research Part A 83A, 747-758 (2007). doi: 10.1002/jbm.a.31329
[165] Gerhardt, L. C. & Boccaccini, A. R. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3, 3867-3910 (2010). doi: 10.3390/ma3073867
[166] Wen, Y. et al. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomaterials Science 5, 1690-1698 (2017). doi: 10.1039/C7BM00315C
[167] Ribas, R. G. et al. Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: a review. Ceramics International 45, 21051-21061 (2019). doi: 10.1016/j.ceramint.2019.07.096
[168] Wang, X. Y. et al. Biomaterial-based microstructures fabricated by two-photon polymerization microfabrication technology. RSC Advances 9, 34472-34480 (2019). doi: 10.1039/C9RA05645A
[169] Chen, G. P., Ushida, T. & Tateishi, T. Scaffold design for tissue engineering. Macromolecular Bioscience 2, 67-77 (2002). doi: 10.1002/1616-5195(20020201)2:2<67::AID-MABI67>3.0.CO;2-F
[170] Deb, P. et al. Scaffold development using biomaterials: a review. Materials Today:Proceedings 5, 12909-12919 (2018). doi: 10.1016/j.matpr.2018.02.276
[171] Liu, X. H. & Ma, P. X. Polymeric scaffolds for bone tissue engineering. Annals of Biomedical Engineering 32, 477-486 (2004). doi: 10.1023/B:ABME.0000017544.36001.8e
[172] Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529-2543 (2000). doi: 10.1016/S0142-9612(00)00121-6
[173] Calori, I. R. et al. Polymer scaffolds as drug delivery systems. European Polymer Journal 129, 109621 (2020). doi: 10.1016/j.eurpolymj.2020.109621
[174] Kamoun, E. A., Kenawy, E. R. S. & Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of Advanced Research 8, 217-233 (2017). doi: 10.1016/j.jare.2017.01.005
[175] Zhao, Y. et al. Preparation of nanofibers with renewable polymers and their application in wound dressing. International Journal of Polymer Science 2016, 4672839 (2016).
[176] Boni, R. et al. Current and novel polymeric biomaterials for neural tissue engineering. Journal of Biomedical Science 25, 90 (2018). doi: 10.1186/s12929-018-0491-8
[177] Zhang, Q. Z. et al. Polymer scaffolds facilitate spinal cord injury repair. Acta Biomaterialia 88, 57-77 (2019). doi: 10.1016/j.actbio.2019.01.056
[178] Urciuolo, A. et al. Intravital three-dimensional bioprinting. Nature Biomedical Engineering 4, 901-915 (2020). doi: 10.1038/s41551-020-0568-z
[179] Weems, A. C. et al. 4D polycarbonates via stereolithography as scaffolds for soft tissue repair. Nature Communications 12, 3771 (2021). doi: 10.1038/s41467-021-23956-6
[180] Nikolova, M. P. & Chavali, M. S. Recent advances in biomaterials for 3D scaffolds: a review. Bioactive Materials 4, 271-292 (2019). doi: 10.1016/j.bioactmat.2019.10.005
[181] Hribar, K. C. et al. Light-assisted direct-write of 3D functional biomaterials. Lab on A Chip 14, 268-275 (2014). doi: 10.1039/C3LC50634G
[182] Drury, J. L. & Mooney, D. J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337-4351 (2003). doi: 10.1016/S0142-9612(03)00340-5
[183] Irawan, V. et al. Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development. Tissue Engineering and Regenerative Medicine 15, 673-697 (2018). doi: 10.1007/s13770-018-0135-9
[184] Soucy, J. R. et al. Photocrosslinkable gelatin/tropoelastin hydrogel adhesives for peripheral nerve repair. Tissue Engineering Part A 24, 1393-1405 (2018). doi: 10.1089/ten.tea.2017.0502
[185] Copes, F. et al. Collagen-based tissue engineering strategies for vascular medicine. Frontiers in Bioengineering and Biotechnology 7, 166 (2019). doi: 10.3389/fbioe.2019.00166
[186] Liu, Y. X. & Chan-Park, M. B. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials 30, 196-207 (2009). doi: 10.1016/j.biomaterials.2008.09.041
[187] Feng, Q. et al. Dynamic and cell-infiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects. ACS Central Science 5, 440-450 (2019). doi: 10.1021/acscentsci.8b00764
[188] Xu, J. B. et al. Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules. Biomaterials 210, 51-61 (2019). doi: 10.1016/j.biomaterials.2019.04.031
[189] Osidak, E. O. et al. Collagen as bioink for bioprinting: a comprehensive review. International Journal of Bioprinting 6, 270 (2020).
[190] Lee, J. M. et al. Bioprinting of collagen: considerations, potentials, and applications. Macromolecular Bioscience 21, 2000280 (2021). doi: 10.1002/mabi.202000280
[191] Rajabi, N. et al. Recent advances on bioprinted gelatin methacrylate-based hydrogels for tissue repair. Tissue Engineering Part A 27, 679-702 (2021). doi: 10.1089/ten.tea.2020.0350
[192] Collins, M. N. & Birkinshaw, C. Hyaluronic acid based scaffolds for tissue engineering-a review. Carbohydrate Polymers 92, 1262-1279 (2013). doi: 10.1016/j.carbpol.2012.10.028
[193] Chircov, C., Grumezescu, A. M. & Bejenaru, L. E. Hyaluronic acid-based scaffolds for tissue engineering. Romanian Journal of Morphology and Embryology 59, 71-76 (2018).
[194] Yoo, H. S. et al. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 26, 1925-1933 (2005). doi: 10.1016/j.biomaterials.2004.06.021
[195] Rakin, R. H. et al. Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting. Biofabrication 13, 044109 (2021). doi: 10.1088/1758-5090/ac25cb
[196] Hernández-González, A. C., Téllez-Jurado, L. & Rodríguez-Lorenzo, L. M. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: a review. Carbohydrate Polymers 229, 115514 (2020). doi: 10.1016/j.carbpol.2019.115514
[197] Arya, N. et al. RGDSP functionalized carboxylated agarose as extrudable carriers for chondrocyte delivery. Materials Science and Engineering:C 99, 103-111 (2019). doi: 10.1016/j.msec.2019.01.080
[198] Norotte, C. et al. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30, 5910-5917 (2009). doi: 10.1016/j.biomaterials.2009.06.034
[199] Mallakpour, S., Sirous, F. & Hussain, C. M. Current achievements in 3D bioprinting technology of chitosan and its hybrids. New Journal of Chemistry 45, 10565-10576 (2021). doi: 10.1039/D1NJ01497H
[200] Prestwich, G. D. Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. Journal of Controlled Release 155, 193-199 (2011). doi: 10.1016/j.jconrel.2011.04.007
[201] Zhai, X. Y. et al. 3D-Bioprinted osteoblast-laden nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both in vitro and in vivo. Advanced Science 5, 1700550 (2018). doi: 10.1002/advs.201700550
[202] Wang, Z. J. et al. Visible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS Applied Materials & Interfaces 10, 26859-26869 (2018).
[203] Mondschein, R. J. et al. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 140, 170-188 (2017). doi: 10.1016/j.biomaterials.2017.06.005
[204] Liao, C. Z., Wuethrich, A. & Trau, M. A material odyssey for 3D nano/microstructures: two photon polymerization based nanolithography in bioapplications. Applied Materials Today 19, 100635 (2020). doi: 10.1016/j.apmt.2020.100635
[205] Song, J. X. et al. From simple to architecturally complex hydrogel scaffolds for cell and tissue engineering applications: opportunities presented by two-photon polymerization. Advanced Healthcare Materials 9, 1901217 (2020). doi: 10.1002/adhm.201901217
[206] Lam, T. et al. Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage. Journal of Biomedical Materials Research Part B:Applied Biomaterials 107, 2649-2657 (2019). doi: 10.1002/jbm.b.34354
[207] Highley, C. B., Rodell, C. B. & Burdick, J. A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Advanced Materials 27, 5075-5079 (2015). doi: 10.1002/adma.201501234
[208] Koroleva, A. et al. Two-photon polymerization-generated and micromolding-replicated 3D scaffolds for peripheral neural tissue engineering applications. Biofabrication 4, 025005 (2012). doi: 10.1088/1758-5082/4/2/025005
[209] Weiß, T. et al. Two-photon polymerization of biocompatible photopolymers for microstructured 3D biointerfaces. Advanced Engineering Materials 13, B264-B273 (2011). doi: 10.1002/adem.201080090
[210] Timashev, P. et al. Novel biodegradable star-shaped polylactide scaffolds for bone regeneration fabricated by two-photon polymerization. Nanomedicine 11, 1041-1053 (2016). doi: 10.2217/nnm-2015-0022
[211] Gao, W. et al. Ionic carbazole-based water-soluble two-photon photoinitiator and the fabrication of biocompatible 3D hydrogel scaffold. ACS Applied Materials & Interfaces 13, 27796-27805 (2021).
[212] Cheung, H. Y. et al. A critical review on polymer-based bio-engineered materials for scaffold development. Composites Part B:Engineering 38, 291-300 (2007). doi: 10.1016/j.compositesb.2006.06.014
[213] Eltom, A., Zhong, G. Y. & Muhammad, A. Scaffold techniques and designs in tissue engineering functions and purposes: a review. Advances in Materials Science and Engineering 2019, 3429527 (2019).
[214] Place, E. S. et al. Synthetic polymer scaffolds for tissue engineering. Chemical Society Reviews 38, 1139-1151 (2009). doi: 10.1039/b811392k
[215] Janoušková, O. Synthetic polymer scaffolds for soft tissue engineering. Physiological Research 67, S335-S348 (2018).
[216] Zhu, J. M. & Marchant, R. E. Design properties of hydrogel tissue-engineering scaffolds. Expert Review of Medical Devices 8, 607-626 (2011). doi: 10.1586/erd.11.27
[217] Platel, R. H., Hodgson, L. M. & Williams, C. K. Biocompatible initiators for lactide polymerization. Polymer Reviews 48, 11-63 (2008). doi: 10.1080/15583720701834166
[218] Zhang, W. D. et al. Tuning the poisson's ratio of biomaterials for investigating cellular response. Advanced Functional Materials 23, 3226-3232 (2013). doi: 10.1002/adfm.201202666
[219] Lunzer, M. et al. A modular approach to sensitized two-photon patterning of photodegradable hydrogels. Angewandte Chemie International Edition 57, 15122-15127 (2018). doi: 10.1002/anie.201808908
[220] Do, A. V. et al. Controlled drug delivery from 3D printed two-photon polymerized poly(ethylene glycol) dimethacrylate devices. International Journal of Pharmaceutics 552, 217-224 (2018). doi: 10.1016/j.ijpharm.2018.09.065
[221] Richter, B. et al. Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins. Advanced Materials 29, 1604342 (2017). doi: 10.1002/adma.201604342
[222] Gou, X. R. et al. Mechanical property of PEG hydrogel and the 3D red blood cell microstructures fabricated by two-photon polymerization. Applied Surface Science 416, 273-280 (2017). doi: 10.1016/j.apsusc.2017.04.178
[223] Kufelt, O. et al. Hyaluronic acid based materials for scaffolding via two-photon polymerization. Biomacromolecules 15, 650-659 (2014). doi: 10.1021/bm401712q
[224] Ulery, B. D., Nair, L. S. & Laurencin, C. T. Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B:Polymer Physics 49, 832-864 (2011). doi: 10.1002/polb.22259
[225] Pok, S. & Jacot, J. G. Biomaterials advances in patches for congenital heart defect repair. Journal of Cardiovascular Translational Research 4, 646-654 (2011). doi: 10.1007/s12265-011-9289-8
[226] Prabhakaran, M. P. et al. Biomimetic material strategies for cardiac tissue engineering. Materials Science and Engineering:C 31, 503-513 (2011). doi: 10.1016/j.msec.2010.12.017
[227] Shin, J. H. et al. Evaluation of cell proliferation and differentiation on a poly(propylene fumarate) 3D scaffold treated with functional peptides. Journal of Materials Science 46, 5282-5287 (2011). doi: 10.1007/s10853-011-5467-y
[228] Spiller, K. L., Maher, S. A. & Lowman, A. M. Hydrogels for the repair of articular cartilage defects. Tissue Engineering Part B:Review 17, 281-299 (2011). doi: 10.1089/ten.teb.2011.0077
[229] Tang, X. Y. et al. Polymeric biomaterials in tissue engineering and regenerative medicine. in Natural and Synthetic Biomedical Polymers (eds Kumbar, S. G., Laurencin, C. T. & Deng, M.) (Amsterdam: Elsevier, 2014), 351-371.
[230] Chen, Q., Roether, J. A. & Boccaccini, A. R. Tissue engineering scaffolds from bioactive glass and composite materials. Topics in Tissue Engineering 4, 1-27 (2008).
[231] Boccaccini, A. R. & Blaker, J. J. Bioactive composite materials for tissue engineering scaffolds. Expert Review of Medical Devices 2, 303-317 (2005). doi: 10.1586/17434440.2.3.303
[232] Qu, H. W. et al. Biomaterials for bone tissue engineering scaffolds: a review. RSC Advances 9, 26252-26262 (2019). doi: 10.1039/C9RA05214C
[233] Shapiro, J. M. & Oyen, M. L. Hydrogel composite materials for tissue engineering scaffolds. JOM 65, 505-516 (2013). doi: 10.1007/s11837-013-0575-6
[234] Bhaskar, B. et al. Biomaterials in Tissue Engineering and Regenerative Medicine: from Basic Concepts to State of the Art Approaches. (Singapore: Springer, 2021).
[235] Narayan, R. ASM Handbook, Volume 23: Materials for Medical Devices. (Materials Park: ASM International, 2012).
[236] Jani, J. M. et al. A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015) 56, 1078-1113 (2014).
[237] Mirzababaei, S. & Pasebani, S. A review on binder jet additive manufacturing of 316L stainless steel. Journal of Manufacturing and Materials Processing 3, 82 (2019). doi: 10.3390/jmmp3030082
[238] Hofer, A. K. et al. Effect of binder system on the thermophysical properties of 3D-printed zirconia ceramics. International Journal of Applied Ceramic Technology 19, 174-180 (2022). doi: 10.1111/ijac.13806
[239] Desponds, A. et al. 3D printing and pyrolysis of optical ZrO2 nanostructures by two-photon lithography: reduced shrinkage and crystallization mediated by nanoparticles seeds. Small 17, 2102486 (2021). doi: 10.1002/smll.202102486
[240] Niu, Y. Q. et al. HA-coated collagen nanofibers for urethral regeneration via in situ polarization of M2 macrophages. Journal of Nanobiotechnology 19, 283 (2021). doi: 10.1186/s12951-021-01000-5
[241] Sun, K. et al. Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering. European Journal of Orthopaedic Surgery & Traumatology 25, 243-249 (2015).
[242] Wang, S. B. et al. Three dimensional printing bilayer membrane scaffold promotes wound healing. Frontiers in Bioengineering and Biotechnology 7, 348 (2019). doi: 10.3389/fbioe.2019.00348
[243] Selim, O. A. et al. Three-dimensional engineered peripheral nerve: toward a new era of patient-specific nerve repair solutions. Tissue Engineering Part B: Reviews. http://dx.doi.org/10.1089/ten.TEB.2020.0355 (2021).
[244] Morimoto, T. K. et al. Toward the design of personalized continuum surgical robots. Annals of Biomedical Engineering 46, 1522-1533 (2018). doi: 10.1007/s10439-018-2062-2
[245] Yuan, H. B., Xing, K. & Hsu, H. Y. Trinity of three-dimensional (3D) scaffold, vibration, and 3D printing on cell culture application: a systematic review and indicating future direction. Bioengineering 5, 57 (2018). doi: 10.3390/bioengineering5030057
[246] Greiner, A. M., Richter, B. & Bastmeyer, M. Micro-engineered 3D scaffolds for cell culture studies. Macromolecular Bioscience 12, 1301-1314 (2012). doi: 10.1002/mabi.201200132
[247] Hippler, M. et al. 3D scaffolds to study basic cell biology. Advanced Materials 31, 1808110 (2019). doi: 10.1002/adma.201808110
[248] Kim, K. et al. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Engineering Part B:Reviews 16, 523-539 (2010).
[249] Chen, Q. H. et al. A study on biosafety of HAP ceramic prepared by SLA-3D printing technology directly. Journal of the Mechanical Behavior of Biomedical Materials 98, 327-335 (2019). doi: 10.1016/j.jmbbm.2019.06.031
[250] Liu, F. H. Synthesis of biomedical composite scaffolds by laser sintering: mechanical properties and in vitro bioactivity evaluation. Applied Surface Science 297, 1-8 (2014). doi: 10.1016/j.apsusc.2013.12.130
[251] Putra, N. E. et al. Extrusion-based 3D printed biodegradable porous iron. Acta Biomaterialia 121, 741-756 (2021). doi: 10.1016/j.actbio.2020.11.022
[252] Ricci, D. et al. Scaling-up techniques for the nanofabrication of cell culture substrates via two-photon polymerization for industrial-scale expansion of stem cells. Materials 10, 66 (2017). doi: 10.3390/ma10010066
[253] Lemma, E. D. et al. Microenvironmental stiffness of 3D polymeric structures to study invasive rates of cancer cells. Advanced Healthcare Materials 6, 1700888 (2017). doi: 10.1002/adhm.201700888
[254] Rovira, D. S. et al. Additive manufacturing of polymeric scaffolds for biomimetic cell membrane engineering. Materials & Design 201, 109486 (2021).
[255] Pandey, M. et al. 3D printing for oral drug delivery: a new tool to customize drug delivery. Drug Delivery and Translational Research 10, 986-1001 (2020). doi: 10.1007/s13346-020-00737-0
[256] Prasad, L. K. & Smyth, H. 3D Printing technologies for drug delivery: a review. Drug Development and Industrial Pharmacy 42, 1019-1031 (2016). doi: 10.3109/03639045.2015.1120743
[257] Wu, B. M. et al. Solid free-form fabrication of drug delivery devices. Journal of Controlled Release 40, 77-87 (1996). doi: 10.1016/0168-3659(95)00173-5
[258] Khaled, S. A. et al. 3D extrusion printing of high drug loading immediate release paracetamol tablets. International Journal of Pharmaceutics 538, 223-230 (2018). doi: 10.1016/j.ijpharm.2018.01.024
[259] Cui, M. S. et al. Fabrication of high drug loading levetiracetam tablets using semi-solid extrusion 3D printing. Journal of Drug Delivery Science and Technology 57, 101683 (2020). doi: 10.1016/j.jddst.2020.101683
[260] Robles-Martinez, P. et al. 3D printing of a multi-layered polypill containing six drugs using a novel stereolithographic method. Pharmaceutics 11, 274 (2019). doi: 10.3390/pharmaceutics11060274
[261] Economidou, S. N. et al. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Materials Science and Engineering:C 102, 743-755 (2019). doi: 10.1016/j.msec.2019.04.063
[262] Limongi, T. et al. Drug delivery applications of three-dimensional printed (3DP) mesoporous scaffolds. Pharmaceutics 12, 851 (2020). doi: 10.3390/pharmaceutics12090851
[263] Ishack, S. et al. Bone regeneration in critical bone defects using three‐dimensionally printed β‐tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP‐2. Journal of Biomedical Materials Research Part B:Applied Biomaterials 105, 366-375 (2017). doi: 10.1002/jbm.b.33561
[264] Rosenberg, M. et al. Bone morphogenic protein 2-loaded porous silicon carriers for osteoinductive implants. Pharmaceutics 11, 602 (2019). doi: 10.3390/pharmaceutics11110602
[265] Saska, S. et al. Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering. Materials Science and Engineering:C 89, 265-273 (2018). doi: 10.1016/j.msec.2018.04.016
[266] Xu, Y. et al. Drug loading/release and bioactivity research of a mesoporous bioactive glass/polymer scaffold. Ceramics International 45, 18003-18013 (2019). doi: 10.1016/j.ceramint.2019.06.019
[267] Fang, J. H. et al. Transdermal composite microneedle composed of mesoporous iron oxide nanoraspberry and PVA for androgenetic alopecia treatment. Polymers 12, 1392 (2020). doi: 10.3390/polym12061392
[268] Amini, A. R., Laurencin, C. T. & Nukavarapu, S. P. Bone tissue engineering: recent advances and challenges. Critical Reviews™ in Biomedical Engineering 40, 363-408 (2012). doi: 10.1615/CritRevBiomedEng.v40.i5.10
[269] Kang, H. W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology 34, 312-319 (2016). doi: 10.1038/nbt.3413
[270] Bahraminasab, M. Challenges on optimization of 3D-printed bone scaffolds. BioMedical Engineering OnLine 19, 69 (2020). doi: 10.1186/s12938-020-00810-2
[271] Polo-Corrales, L., Latorre-Esteves, M. & Ramirez-Vick, J. E. Scaffold design for bone regeneration. Journal of Nanoscience and Nanotechnology 14, 15-56 (2014). doi: 10.1166/jnn.2014.9127
[272] Bendtsen, S. T., Quinnell, S. P. & Wei, M. Development of a novel alginate‐polyvinyl alcohol‐hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Journal of Biomedical Materials Research Part A 105, 1457-1468 (2017). doi: 10.1002/jbm.a.36036
[273] Peltola, S. M. et al. A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine 40, 268-280 (2008). doi: 10.1080/07853890701881788
[274] Lee, K. W. et al. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules 8, 1077-1084 (2007). doi: 10.1021/bm060834v
[275] Roskies, M. et al. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells. Journal of Biomaterials Applications 31, 132-139 (2016). doi: 10.1177/0885328216638636
[276] Du, Y. Y. et al. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials 137, 37-48 (2017). doi: 10.1016/j.biomaterials.2017.05.021
[277] An, J. et al. Advanced nanobiomaterial strategies for the development of organized tissue engineering constructs. Nanomedicine 8, 591-602 (2013). doi: 10.2217/nnm.13.46
[278] Maggi, A., Li, H. Q. & Greer, J. R. Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth. Acta Biomaterialia 63, 294-305 (2017). doi: 10.1016/j.actbio.2017.09.007
[279] Felfel, R. M. et al. Performance of multiphase scaffolds for bone repair based on two-photon polymerized poly(D, L-lactide-co-ɛ-caprolactone), recombinamers hydrogel and nano-HA. Materials & Design 160, 455-467 (2018).
[280] Towler, D. A. The osteogenic-angiogenic interface: novel insights into the biology of bone formation and fracture repair. Current Osteoporosis Reports 6, 67-71 (2008). doi: 10.1007/s11914-008-0012-x
[281] Qazi, T. H. et al. Extrusion printed scaffolds with varying pore size as modulators of MSC angiogenic paracrine effects. ACS Biomaterials Science & Engineering 5, 5348-5358 (2019).
[282] Cidonio, G. et al. Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivo. Biofabrication 12, 035010 (2020). doi: 10.1088/1758-5090/ab8753
[283] Santos, M. I. et al. Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone–starch scaffold and the in vitro development of vascularization. Biomaterials 30, 4407-4415 (2009). doi: 10.1016/j.biomaterials.2009.05.004
[284] Piard, C. et al. Bioprinted osteon-like scaffolds enhance in vivo neovascularization. Biofabrication 11, 025013 (2019). doi: 10.1088/1758-5090/ab078a
[285] Piard, C. et al. 3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance. Biomaterials 222, 119423 (2019). doi: 10.1016/j.biomaterials.2019.119423
[286] Druecke, D. et al. Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: long-term investigations using intravital fluorescent microscopy. Journal of Biomedical Materials Research Part A 68A, 10-18 (2004). doi: 10.1002/jbm.a.20016
[287] Rouwkema, J., Rivron, N. C. & van Blitterswijk, C. A. Vascularization in tissue engineering. Trends in Biotechnology 26, 434-441 (2008). doi: 10.1016/j.tibtech.2008.04.009
[288] Khang, G. Handbook of Intelligent Scaffolds for Tissue Engineering and Regenerative Medicine. (Singapore: Pan Stanford, 2012), 589-606.
[289] Mobaraki, M. et al. Bioinks and bioprinting: a focused review. Bioprinting 18, e00080 (2020). doi: 10.1016/j.bprint.2020.e00080
[290] Gopinathan, J. & Noh, I. Recent trends in bioinks for 3D printing. Biomaterials Research 22, 11 (2018). doi: 10.1186/s40824-018-0122-1
[291] Bajaj, P. et al. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annual Review of Biomedical Engineering 16, 247-276 (2014). doi: 10.1146/annurev-bioeng-071813-105155
[292] Grinstaff, M. W. Dendritic macromers for hydrogel formation: tailored materials for ophthalmic, orthopedic, and biotech applications. Journal of Polymer Science Part A:Polymer Chemistry 46, 383-400 (2008). doi: 10.1002/pola.22525
[293] Gentsch, R. & Börner, H. G. Designing Three-Dimensional Materials at the Interface to Biology. in Bioactive Surfaces (eds Börner, H. G. & Lutz, J. F.) (Berlin: Springer, 2011), 163-192.
[294] Koçak, E., Yıldız, A. & Acartürk, F. Three dimensional bioprinting technology: applications in pharmaceutical and biomedical area. Colloids and Surfaces B:Biointerfaces 197, 111396 (2021). doi: 10.1016/j.colsurfb.2020.111396
[295] Hockaday, L. A. et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4, 035005 (2012). doi: 10.1088/1758-5082/4/3/035005
[296] Mohammadian, Y. & Nasirzadeh, N. Toxicity risks of occupational exposure in 3D printing and bioprinting industries: a systematic review. Toxicology and Industrial Health 37, 573-584 (2021). doi: 10.1177/07482337211031691
[297] Amani, H. et al. Three-dimensional graphene foams: synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering. ACS Biomaterials Science & Engineering 5, 193-214 (2019).
[298] Macdonald, N. P. et al. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays. Lab on A Chip 16, 291-297 (2016). doi: 10.1039/C5LC01374G
[299] He, H. Y. et al. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study. International Journal of Clinical and Experimental Medicine 8, 11777-11785 (2015).
[300] Liu, J. et al. Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydrate Polymers 207, 297-316 (2019). doi: 10.1016/j.carbpol.2018.11.077
[301] HP jet fusion 3200 3D printer. at https://pick3dprinter.com/hp-jet-fusion-3200-review/.
[302] Behera, D. et al. Current challenges and potential directions towards precision microscale additive manufacturing–part II: laser-based curing, heating, and trapping processes. Precision Engineering 68, 301-318 (2021). doi: 10.1016/j.precisioneng.2020.12.012
[303] Nazir, A. & Jeng, J. Y. A high-speed additive manufacturing approach for achieving high printing speed and accuracy. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science 234, 2741-2749 (2020). doi: 10.1177/0954406219861664
[304] FDM vs. SLA: compare the two most popular types of 3D printers. at https://formlabs.com/blog/fdm-vs-sla-compare-types-of-3d-printers/.
[305] EOS P 500 The automation-ready manufacturing platform for laser sintering of plastic parts on an industrial scale. at https://www.eos.info/en/additive-manufacturing/3d-printing-plastic/eos-polymer-systems/eos-p-500.
[306] SLS printer EOS formiga P 110 velocis. at https://www.eos.info/en/additive-manufacturing/3d-printing-plastic/eos-polymer-systems/formiga-p-110-velocis.
[307] Desktop SLS printer red rock 3D. at http://www.redrocksls.com/.
[308] Shallan, A. I. et al. Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Analytical Chemistry 86, 3124-3130 (2014). doi: 10.1021/ac4041857
[309] Vizsnyiczai, G., Kelemen, L. & Ormos, P. Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms. Optics Express 22, 24217-24223 (2014). doi: 10.1364/OE.22.024217
[310] Tagliaferri, V. et al. Environmental and economic analysis of FDM, SLS and MJF additive manufacturing technologies. Materials 12, 4161 (2019). doi: 10.3390/ma12244161
[311] Pati, F. et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nature Communications 5, 3935 (2014). doi: 10.1038/ncomms4935
[312] Kuang, X. et al. 3D printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing. ACS Applied Materials & Interfaces 10, 7381-7388 (2018).
[313] Schmidleithner, C. & Kalaskar, D. M. Stereolithography. in 3D Printing (ed Cvetković, D.) (London: IntechOpen, 2018).
[314] Stampfl, J. et al. Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. Journal of Micromechanics and Microengineering 18, 125014 (2008). doi: 10.1088/0960-1317/18/12/125014
[315] Weisgrab, G. et al. 3D Printing of large-scale and highly porous biodegradable tissue engineering scaffolds from poly(trimethylene-carbonate) using two-photon-polymerization. Biofabrication 12, 045036 (2020). doi: 10.1088/1758-5090/abb539
[316] Lamont, A. C. et al. A facile multi-material direct laser writing strategy. Lab on A Chip 19, 2340-2345 (2019). doi: 10.1039/C9LC00398C