[1] |
Chang, M. IoT opportunities in photonics. Laser Focus World 52, ISSN 1043-8092 (2016). |
[2] |
Yao, K., Unni, R. & Zheng, Y. B. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics 8, 339–366 (2019). doi: 10.1515/nanoph-2018-0183 |
[3] |
Mahdavinejad, M. S. et al. Machine learning for internet of things data analysis: a survey. Digital Commun. Netw. 4, 161–175 (2018). doi: 10.1016/j.dcan.2017.10.002 |
[4] |
Liu, X. & Deng, N. Emerging optical communication technologies for 5 G. In Optical Fiber Telecommunications Ⅶ (ed. Willner, A. E. ) (Amsterdam: Academic Press, 2020), 751–783. |
[5] |
Wang, J. W. et al. Integrated photonic quantum technologies. Nat. Photonics 14, 273–284 (2020). doi: 10.1038/s41566-019-0532-1 |
[6] |
Elshaari, A. W. et al. Hybrid integrated quantum photonic circuits. Nat. Photonics 14, 285–298 (2020). doi: 10.1038/s41566-020-0609-x |
[7] |
Diamanti, E. et al. Practical challenges in quantum key distribution. npj Quantum Inf. 2, 16025 (2016). doi: 10.1038/npjqi.2016.25 |
[8] |
Asghari, M. & Krishnamoorthy, A. V. Energy-efficient communication. Nat. Photonics 5, 268–270 (2011). doi: 10.1038/nphoton.2011.68 |
[9] |
Vivien, L. & Pavesi, L. Handbook of silicon photonics. (Boca Raton: Taylor & Francis, 2013). |
[10] |
Zhou, Z. P., Yin, B. & Michel, J. On-chip light sources for silicon photonics. Light. : Sci. Appl. 4, e358 (2015). doi: 10.1038/lsa.2015.131 |
[11] |
Helkey, R. et al. High-performance photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron. 25, 8300215 (2019). doi: 10.1109/JSTQE.2019.2903775 |
[12] |
Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015). doi: 10.1038/nature16454 |
[13] |
Song, H. Z. The development of quantum emitters based on semiconductor quantum dots. in Quantum Dot Optoelectronic Devices (eds. Yu, P. & Wang, Z. M. ) (Cham: Springer, 2020), 83-106. |
[14] |
Michler, P. Quantum Dots for Quantum Information Technologies. (Cham: Springer, 2017). |
[15] |
Eisenstein, G. & Bimberg, D. Green Photonics and Electronics. (Cham: Springer International Publishing, 2017). |
[16] |
Yu, P. & Wang, Z. M. Quantum Dot Optoelectronic Devices. (Springer International Publishing, Cham, 2020). |
[17] |
Arakawa, Y. & Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982). doi: 10.1063/1.92959 |
[18] |
Kristaedter, N. et al. Low threshold, large To injection laser emission from (InGa)As quantum dots. Electron. Lett. 30, 1416–1417 (1994). doi: 10.1049/el:19940939 |
[19] |
Mirin, R., Gossard, A. & Bowers, J. Room temperature lasing from InGaAs quantum dots. Electron. Lett. 32, 1732–1734 (1996). doi: 10.1049/el:19961147 |
[20] |
Norman, J. C. et al. Perspect. : future quantum dot. photonic Integr. circuits APL Photonics 3, 030901 (2018). |
[21] |
Crowley, M. T. et al. GaAs-based quantum dot lasers. Semiconductors Semimet. 86, 371–417 (2012). doi: 10.1016/B978-0-12-391066-0.00010-1 |
[22] |
Liu, J. R. et al. InAs/InP quantum dot lasers and applications. Proceedings of 2018 IEEE International Semiconductor Laser Conference. Santa Fe, NM, USA: IEEE, 2018. |
[23] |
Septon, T. et al. Large linewidth reduction in semiconductor lasers based on atom-like gain material. Optica 6, 1071–1077 (2019). doi: 10.1364/OPTICA.6.001071 |
[24] |
Lelarge, F. et al. Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm. IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007). |
[25] |
Wan, Y. T. et al. Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers. ACS Photonics 6, 279–285 (2019). doi: 10.1021/acsphotonics.8b01341 |
[26] |
Gong, M. et al. Electronic structure of self-assembled InAs/InP quantum dots: comparison with self-assembled InAs/GaAs quantum dots. Phys. Rev. B 77, 045326 (2008). doi: 10.1103/PhysRevB.77.045326 |
[27] |
Shi, B. et al. Comparison of static and dynamic characteristics of 1550 nm quantum dash and quantum well lasers. Opt. Express 28, 26823–26835 (2020). doi: 10.1364/OE.399188 |
[28] |
Dong, B. et al. Influence of the polarization anisotropy on the linewidth enhancement factor and reflection sensitivity of 1.55-μm InP-based InAs quantum dash lasers. Appl. Phys. Lett. 115, 091101 (2019). doi: 10.1063/1.5110768 |
[29] |
Even, J. et al. From basic physical properties of InAs/InP quantum dots to state-of-the-art lasers for 1.55 μm optical communications: an overview. in Semiconductor Nanocrystals and Metal Nanoparticles (Boca Raton: CRC Press, 2016), 95-125. |
[30] |
Gilfert, C. et al. Influence of the As2/As4 growth modes on the formation of quantum dot-like InAs islands grown on InAlGaAs/InP (100). Appl. Phys. Lett. 96, 191903 (2010). doi: 10.1063/1.3428956 |
[31] |
Chen, S. M. et al. Electrically pumped continuous-wave Ⅲ-Ⅴ quantum dot lasers on silicon. Nat. Photonics 10, 307–311 (2016). doi: 10.1038/nphoton.2016.21 |
[32] |
Zhu, S. et al. 1.5 μm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon. Appl. Phys. Lett. 113, 221103 (2018). doi: 10.1063/1.5055803 |
[33] |
Norman, J. C. et al. Quantum dot lasers-History and future prospects. J. Vac. Sci. Technol. A 39, 020802 (2021). doi: 10.1116/6.0000768 |
[34] |
Norman, J. C. et al. A review of high-performance quantum dot lasers on silicon. IEEE J. Quantum Electron. 55, 2000511 (2019). http://ieeexplore.ieee.org/document/8653374 |
[35] |
Nishi, K. et al. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron. 23, 1901007 (2017). doi: 10.1109/JSTQE.2017.2699787 |
[36] |
Norman, J. C. et al. The importance of p-doping for quantum dot laser on silicon performance. IEEE J. Quantum Electron. 55, 2001111 (2019). http://ieeexplore.ieee.org/document/8839074/ |
[37] |
Duan, J. N. et al. Effect of p-doping on the intensity noise of epitaxial quantum dot lasers on silicon. Opt. Lett. 45, 4887–4890 (2020). doi: 10.1364/OL.395499 |
[38] |
Duan, J. et al. Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor. Appl. Phys. Lett. 112, 251111 (2018). doi: 10.1063/1.5025879 |
[39] |
Grillot, F. et al. Physics and applications of quantum dot lasers for silicon photonics. Nanophotonics 9, 1271–1286 (2020). doi: 10.1515/nanoph-2019-0570 |
[40] |
Duan, J. N. et al. 1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon. IEEE Photonic Technol. Lett. 31, 345–348 (2019). doi: 10.1109/LPT.2019.2895049 |
[41] |
Matsui, Y. et al. Low-chirp isolator-free 65-GHz-bandwidth directly modulated lasers. Nat. Photonics 15, 59–63 (2021). doi: 10.1038/s41566-020-00742-2 |
[42] |
Huang, H. et al. Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback. APL Photonics 5, 016103 (2020). doi: 10.1063/1.5120029 |
[43] |
Schires, K. et al. Dynamics of hybrid Ⅲ-Ⅴ silicon semiconductor lasers for integrated photonics. IEEE J. Sel. Top. Quantum Electron. 22, 43–49 (2016). doi: 10.1109/JSTQE.2016.2565462 |
[44] |
Zhang, Y. et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica 6, 473–478 (2019). doi: 10.1364/OPTICA.6.000473 |
[45] |
Maniloff, E., Gareau, S. & Moyer, M. 400G and beyond: coherent evolution to high-capacity inter data center links. Proceedings of 2019 Optical Fiber Communications Conference and Exhibition. San Diego, CA, USA: IEEE, 2019. |
[46] |
Kikuchi, K. Fundamentals of coherent optical fiber communications. J. Lightwave Technol. 34, 157–179 (2016). doi: 10.1109/JLT.2015.2463719 |
[47] |
Zhang, Z. W. et al. High-speed coherent optical communication with isolator-free heterogeneous Si/Ⅲ-Ⅴ lasers. J. Lightwave Technol. 38, 6584–6590 (2020). doi: 10.1109/JLT.2020.3015738 |
[48] |
Seimetz, M. Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation. Proceedings of 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference. San Diego, CA, USA: IEEE, 2008. |
[49] |
Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019). doi: 10.1364/OPTICA.6.000680 |
[50] |
Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018). doi: 10.1038/s41586-018-0065-7 |
[51] |
Suh, M. G. et al. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016). doi: 10.1126/science.aah6516 |
[52] |
Geng, J. H., Spiegelberg, C. & Jiang, S. B. Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry. IEEE Photonics Technol. Lett. 17, 1827–1829 (2005). doi: 10.1109/LPT.2005.853258 |
[53] |
Coldren, L. A., Corzine, S. W. & Mašanović, M. L. Diode Lasers and Photonic Integrated Circuits. 2nd edn. (Hoboken, NJ: John Wiley & Sons, 2012). |
[54] |
Duan, J. N. et al. Carrier-noise-enhanced relative intensity noise of quantum dot lasers. IEEE J. Quantum Electron. 54, 2001407 (2018). doi: 10.1109/JQE.2018.2880452 |
[55] |
Zhou, Y. G. et al. Optical noise of dual-state lasing quantum dot lasers. IEEE J. Quantum Electron. 56, 2001207 (2020). http://www.researchgate.net/publication/344487107_Optical_noise_of_dual-state_lasing_quantum_dot_lasers |
[56] |
Cox, C. H. et al. Limits on the performance of RF-over-fiber links and their impact on device design. IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006). doi: 10.1109/TMTT.2005.863818 |
[57] |
Duan, J. et al. Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers. Appl. Phys. Lett. 112, 121102 (2018). doi: 10.1063/1.5022480 |
[58] |
Akiyama, T. et al. Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices. IEEE J. Quantum Electron. 37, 1059–1065 (2001). doi: 10.1109/3.937395 |
[59] |
Ishikawa, H. Applications of quantum dot to optical devices. Semiconductors Semimet. 60, 287–323 (1999). doi: 10.1016/S0080-8784(08)62533-8 |
[60] |
Huang, H. et al. Efficiency of four-wave mixing in injection-locked InAs/GaAs quantum-dot lasers. AIP Adv. 6, 125105 (2016). doi: 10.1063/1.4971271 |
[61] |
Sadeev, T. et al. Highly efficient non-degenerate four-wave mixing under dual-mode injection in InP/InAs quantum-dash and quantum-dot lasers at 1.55 μm. Appl. Phys. Lett. 107, 191111 (2015). |
[62] |
Huang, H. et al. Non-degenerate four-wave mixing in an optically injection-locked InAs/InP quantum dot Fabry–Perot laser. Appl. Phys. Lett. 106, 143501 (2015). doi: 10.1063/1.4916738 |
[63] |
Stern, B. et al. On-chip mode-division multiplexing switch. Optica 2, 530–535 (2015). doi: 10.1364/OPTICA.2.000530 |
[64] |
Cheng, Q. X. et al. Recent advances in optical technologies for data centers: a review. Optica 5, 1354–1370 (2018). doi: 10.1364/OPTICA.5.001354 |
[65] |
Dong, B. Z. et al. Frequency comb dynamics of a 1.3 μm hybrid-silicon quantum dot semiconductor laser with optical injection. Opt. Lett. 44, 5755–5758 (2019). doi: 10.1364/OL.44.005755 |
[66] |
Liu, S. et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si. Electron. Lett. 54, 432–433 (2018). doi: 10.1049/el.2017.4639 |
[67] |
Chow, W. W. et al. Multimode description of self-mode locking in a single-section quantum-dot laser. Opt. Express 28, 5317–5330 (2020). doi: 10.1364/OE.382821 |
[68] |
Grillot, F. et al. Nonlinear-optical properties of epitaxial quantum dot lasers on silicon. Proceedings of the 28th International Symposium on Nanostructures: Physics and Technology. Virtual Event, 2020. |
[69] |
Osborne, S. et al. State filling in InAs quantum-dot laser structures. IEEE J. Quantum Electron. 40, 1639–1645 (2004). doi: 10.1109/JQE.2004.837331 |
[70] |
Zhang, Z. K. et al. 30-GHz directly modulation DFB laser with narrow linewidth. Proceedings of the Asia Communications and Photonics Conference 2015. Hong Kong, China: Optical Society of America, 2015. |
[71] |
Kelly, B. et al. Discrete mode laser diodes with very narrow linewidth emission. Electron. Lett. 43, 1282–1284 (2007). doi: 10.1049/el:20072311 |
[72] |
Pourshab, N. et al. Analysis of narrow linewidth fiber laser using double subring resonators. J. Optical Soc. Am. B 34, 2414–2420 (2017). doi: 10.1364/JOSAB.34.002414 |
[73] |
Santis, C. T. et al. Quantum control of phase fluctuations in semiconductor lasers. Proc. Natl Acad. Sci. USA 115, E7896–E7904 (2018). doi: 10.1073/pnas.1806716115 |
[74] |
Gallet, A. et al. Dynamic and noise properties of high-Q hybrid laser. Proceedings of 2018 IEEE International Semiconductor Laser Conference. Santa Fe, NM, USA: IEEE, 2018. |
[75] |
Redlich, C. et al. Linewidth rebroadening in quantum dot semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 23, 1901110 (2017). doi: 10.1109/JSTQE.2017.2701555 |
[76] |
Ukhanov, A. A. et al. Orientation dependence of the optical properties in InAs quantum-dash lasers on InP. Appl. Phys. Lett. 81, 981–983 (2002). doi: 10.1063/1.1498875 |
[77] |
Su, H. & Lester, L. F. Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp. J. Phys. D: Appl. Phys. 38, 2112–2118 (2005). doi: 10.1088/0022-3727/38/13/006 |
[78] |
D'Ottavi, A. et al. Four-wave mixing in semiconductor optical amplifiers: a practical tool for wavelength conversion. IEEE J. Sel. Top. Quantum Electron. 3, 522–528 (1997). doi: 10.1109/2944.605703 |
[79] |
Lu, Z. G. et al. Highly efficient non-degenerate four-wave mixing process in InAs/InGaAsP quantum dots. Electron. Lett. 42, 1112–1114 (2006). doi: 10.1049/el:20062152 |
[80] |
Wang, C. et al. Nondegenerate four-wave mixing in a dual-mode injection-locked InAs/InP(100) nanostructure laser. IEEE Photonics. Journal 6, 1500408 (2014). |
[81] |
Yao, J. P. Microwave photonics. J. Lightwave Technol. 27, 314–335 (2009). doi: 10.1109/JLT.2008.2009551 |
[82] |
Seeds, A. J. & Williams, K. J. Microwave photonics. J. Lightwave Technol. 24, 4628–4641 (2006). doi: 10.1109/JLT.2006.885787 |
[83] |
Qi, X. Q. & Liu, J. M. Photonic microwave applications of the dynamics of semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011). doi: 10.1109/JSTQE.2011.2121055 |
[84] |
Wang, C. et al. Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation. Opt. Lett. 41, 1153–1156 (2016). doi: 10.1364/OL.41.001153 |
[85] |
Simpson, T. B. et al. Tunable oscillations in optically injected semiconductor lasers with reduced sensitivity to perturbations. J. Lightwave Technol. 32, 3749–3758 (2014). doi: 10.1109/JLT.2014.2332415 |
[86] |
Huang, H. et al. Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states. AIP Adv. 6, 125114 (2016). doi: 10.1063/1.4973335 |
[87] |
Wang, C. et al. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking. Sci. Rep. 6, 27825 (2016). doi: 10.1038/srep27825 |
[88] |
Grillot, F. et al. 2.5-Gb/s transmission characteristics of 1.3-μm DFB lasers with external optical feedback. IEEE Photonics Technol. Lett. 14, 101–103 (2002). doi: 10.1109/68.974175 |
[89] |
Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008). doi: 10.1126/science.1154622 |
[90] |
Coddington, I. et al. Rapid and precise absolute distance measurements at long range. Nat. Photonics 3, 351–356 (2009). doi: 10.1038/nphoton.2009.94 |
[91] |
Wada, O. Femtosecond all-optical devices for ultrafast communication and signal processing. N. J. Phys. 6, 183 (2004). doi: 10.1088/1367-2630/6/1/183 |
[92] |
de Lima, T. F. et al. Progress in neuromorphic photonics. Nanophotonics 6, 577–599 (2017). doi: 10.1515/nanoph-2016-0139 |
[93] |
Fortier, T. et al. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2, 153 (2019). doi: 10.1038/s42005-019-0249-y |
[94] |
Kurczveil, G. et al. On-chip hybrid silicon quantum dot comb laser with 14 error-free channels. Proceedings of 2018 IEEE International Semiconductor Laser Conference. Santa Fe, NM, USA: IEEE, 2018. |
[95] |
Liu, S. T. et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica 6, 128–134 (2019). doi: 10.1364/OPTICA.6.000128 |
[96] |
Lin, C. Y. et al. Microwave characterization and stabilization of timing jitter in a quantum-dot passively mode-locked laser via external optical feedback. IEEE J. Sel. Top. Quantum Electron. 17, 1311–1317 (2011). doi: 10.1109/JSTQE.2011.2118745 |
[97] |
Verolet, T. et al. Mode locked laser phase noise reduction under optical feedback for coherent DWDM communication. J. Lightwave Technol. 38, 5708–5715 (2020). doi: 10.1109/JLT.2020.3002653 |
[98] |
Dong, B. Z. et al. 1.3-µm passively mode-locked quantum dot lasers epitaxially grown on silicon: gain properties and optical feedback stabilization. J. Phys. : Photonics 2, 045006 (2020). doi: 10.1088/2515-7647/aba5a6 |
[99] |
Kim, K. C. et al. Gain-dependent linewidth enhancement factor in the quantum dot structures. Nanotechnology 21, 134010 (2010). doi: 10.1088/0957-4484/21/13/134010 |
[100] |
Moody, G. et al. Chip-scale nonlinear photonics for quantum light generation. AVS Quantum. Science 2, 041702 (2020). |