[1] Gan, Q., Bartoli, F. J. & Kafafi, Z. H. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier. Adv. Mater. 25, 2385-2396 (2013). doi: 10.1002/adma.201203323
[2] Kuehnel, M. F. et al. ZnSe nanorods as visible-light absorbers for photocatalytic and photoelectrochemical H2 evolution in. Water Angew. Chim. Int. Ed. 58, 5059-5063 (2019). doi: 10.1002/anie.201814265
[3] Dias, P. et al. Transparent cuprous oxide photocathode enabling a stacked tandem cell for unbiased water splitting. Adv. Energy Mater. 5, 1501537 (2015). doi: 10.1002/aenm.201501537
[4] Branch, S. D. et al. Optically transparent thin-film electrode chip for spectroelectrochemical sensing. Anal. Chem. 89, 7324-7332 (2017). doi: 10.1021/acs.analchem.7b00258
[5] Spira, M. E. & Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8, 83-94 (2013). doi: 10.1038/nnano.2012.265
[6] Lemineur, J. F. et al. In situ optical monitoring of the electrochemical conversion of dielectric nanoparticles: from multi-step charge injection to nanoparticle motion. J. Am. Chem. Soc. 142, 7937-7946 (2020). doi: 10.1021/jacs.0c02071
[7] Zhu, H. et al. Detection of molecules and charges with a bright field optical microscope. Anal. Chem. 92, 5904-5909 (2020). doi: 10.1021/acs.analchem.9b05750
[8] Bandarenka, A. S. et al. Localized electrochemical impedance spectroscopy: visualization of spatial distributions of the key parameters describing solid/liquid interfaces. Anal. Chem. 85, 2443-2448 (2013). doi: 10.1021/ac303490t
[9] Polcari, D., Dauphin-Ducharme, P. & Mauzeroll, J. Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chem. Rev. 116, 13234-13278 (2016). doi: 10.1021/acs.chemrev.6b00067
[10] Stephens, L. I. & Mauzeroll, J. Altered spatial resolution of scanning electrochemical microscopy induced by multifunctional dual-barrel microelectrodes. Anal. Chem. 90, 6796-6803 (2018). doi: 10.1021/acs.analchem.8b00821
[11] Koley, G., Spencer, M. G. & Bhangale, H. R. Cantilever effects on the measurement of electrostatic potentials by scanning Kelvin probe microscopy. Appl. Phys. Lett. 79, 545-547 (2001). doi: 10.1063/1.1384004
[12] Domanski, A. L. et al. Kelvin probe force microscopy in nonpolar liquids. Langmuir 28, 13892-13899 (2012). doi: 10.1021/la302451h
[13] Foley, K. J., Shan, X. N. & Tao, N. J. Surface impedance imaging technique. Anal. Chem. 80, 5146-5151 (2008). doi: 10.1021/ac800361p
[14] Liu, X. W. et al. Plasmonic-based electrochemical impedance imaging of electrical activities in single cells. Angew. Chim. Int. Ed. 56, 8855-8859 (2017). doi: 10.1002/anie.201703033
[15] Wang, W. et al. Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy. Nat. Chem. 3, 249-255 (2011). doi: 10.1038/nchem.961
[16] Liang, W. B. et al. Measurement of small molecule binding kinetics on a protein microarray by plasmonic-based electrochemical impedance imaging. Anal. Chem. 86, 9860-9865 (2014). doi: 10.1021/ac5024556
[17] MacGriff, C. et al. Charge-based detection of small molecules by plasmonic-based electrochemical impedance microscopy. Anal. Chem. 85, 6682-6687 (2013). doi: 10.1021/ac400475z
[18] Shan, X. N. et al. Imaging local electrochemical current via surface plasmon resonance. Science 327, 1363-1366 (2010). doi: 10.1126/science.1186476
[19] Popescu, G. Quantitative Phase Imaging of Cells and Tissues. (McGraw-Hill, New York, 2011).
[20] Kandel, M. E. et al. Phase imaging with computational specificity (PICS) for measuring dry mass changes in sub-cellular compartments. Nat. Commun. 11, 6256 (2020). doi: 10.1038/s41467-020-20062-x
[21] Langehanenberg, P., von Bally, G. & Kemper, B. Application of partially coherent light in live cell imaging with digital holographic microscopy. J. Mod. Opt. 57, 709-717 (2010). doi: 10.1080/09500341003605411
[22] Merola, F. et al. Tomographic flow cytometry by digital holography. Light Sci. Appl. 6, e16241 (2017). doi: 10.1038/lsa.2016.241
[23] Miccio, L. et al. Red blood cell as an adaptive optofluidic microlens. Nat. Commun. 6, 6502 (2015). doi: 10.1038/ncomms7502
[24] Park, Y. K., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578-589 (2018). doi: 10.1038/s41566-018-0253-x
[25] Ash, W. M. III, Krzewina, L. & Kim, M. K. Quantitative imaging of cellular adhesion by total internal reflection holographic microscopy. Appl. Opt. 48, H144-H152 (2009). doi: 10.1364/AO.48.00H144
[26] Mandracchia, B. et al. Label-free quantification of the effects of lithium niobate polarization on cell adhesion via holographic microscopy. J. Biophotonics 11, e201700332 (2018). doi: 10.1002/jbio.201700332
[27] Merola, F. et al. Phase contrast tomography at lab on chip scale by digital holography. Methods 136, 108-115 (2018). doi: 10.1016/j.ymeth.2018.01.003
[28] Charrière, F. et al. Cell refractive index tomography by digital holographic microscopy. Opt. Lett. 31, 178-180 (2006). doi: 10.1364/OL.31.000178
[29] Lee, M. et al. Label-free optical quantification of structural alterations in Alzheimer's disease. Sci. Rep. 6, 31034 (2016). doi: 10.1038/srep31034
[30] Shan, M. G. et al. White-light diffraction phase microscopy at doubled space-bandwidth product. Opt. Express 24, 29033-29039 (2016). doi: 10.1364/OE.24.029033
[31] Wang, Z. et al. Spatial light interference microscopy (SLIM). Opt. Express 19, 1016-1026 (2011). doi: 10.1364/OE.19.001016
[32] Kandel, M. E. et al. Epi-illumination gradient light interference microscopy for imaging opaque structures. Nat. Commun. 10, 4691 (2019). doi: 10.1038/s41467-019-12634-3
[33] Nguyen, T. H. et al. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun. 8, 210 (2017). doi: 10.1038/s41467-017-00190-7
[34] Majeed, H. et al. Magnified image spatial spectrum (MISS) microscopy for nanometer and millisecond scale label-free imaging. Opt. Express 26, 5423-5440 (2018). doi: 10.1364/OE.26.005423
[35] Munteanu, R. E. et al. High spatial resolution electrochemical biosensing using reflected light microscopy. Sci. Rep. 9, 15196 (2019). doi: 10.1038/s41598-019-50949-9
[36] Bhaduri, B. et al. Diffraction phase microscopy: principles and applications in materials and life sciences. Adv. Opt. Photonics 6, 57-119 (2014). doi: 10.1364/AOP.6.000057
[37] Shan, X. N. et al. Plasmonic-based imaging of local square wave voltammetry. Anal. Chem. 83, 7394-7399 (2011). doi: 10.1021/ac201392r
[38] Wang, S. P. et al. Electrochemical surface plasmon resonance: basic formalism and experimental validation. Anal. Chem. 82, 935-941 (2010). doi: 10.1021/ac902178f
[39] Yuan, L., Tao, N. J. & Wang, W. Plasmonic imaging of electrochemical impedance. Annu. Rev. Anal. Chem. 10, 183-200 (2017). doi: 10.1146/annurev-anchem-061516-045150
[40] Zhou, X. L. et al. Surface plasmon resonance microscopy: from single-molecule sensing to single-cell imaging. Angew. Chim. Int. Ed. 59, 1776-1785 (2020). doi: 10.1002/anie.201908806
[41] Rosu-Hamzescu, M. et al. High speed CMOS acquisition system based on FPGA embedded image processing for electro-optical measurements. Rev. Sci. Instrum. 89, 065103 (2018). doi: 10.1063/1.5022546
[42] Beekers, I. et al. Combined confocal microscope and brandaris 128 ultra-high-speed camera. Ultrasound Med. Biol. 45, 2575-2582 (2019). doi: 10.1016/j.ultrasmedbio.2019.06.004
[43] Lioubimov, V. et al. Effect of varying electric potential on surface-plasmon resonance sensing. Appl. Opt. 43, 3426-3432 (2004). doi: 10.1364/AO.43.003426
[44] Pleskov, Y. V. Electric double layer on semiconductor electrodes. in Comprehensive Treatise of Electrochemistry (eds Bockris, J. O. M., Conway, B. E., & Yeager, E. ) 291-328 (Springer, Boston, 1980).
[45] Brett, C. M. A. & Brett, A. M. O. Electrochemistry—Principles, methods and applications. (Oxford University Press, Oxford, 1993).
[46] Almog, I. F., Bradley, M. S. & Bulović, V. The Lorentz Oscillator and its Applications. (MIT OpenCourseWare, 2011) 1-34.
[47] Cherednichenko, K. & Graham, W. Frequency-dependent impedance and surface waves on the boundary of a stratified dielectric medium. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 377, 20190218 (2019). doi: 10.1098/rsta.2019.0218
[48] Gharbi, T. et al. Fitting optical properties of metals by Drude-Lorentz and partial-fraction models in the [0.5;6] eV range. Optical Mater. Express 10, 1129-1162 (2020).
[49] McIntyre, J. D. E. Electrochemical modulation spectroscopy. Surf. Sci. 37, 658-682 (1973). doi: 10.1016/0039-6028(73)90357-9
[50] Polonschii, C. et al. Complementarity of EIS and SPR to reveal specific and nonspecific binding when interrogating a model bioaffinity sensor; perspective offered by plasmonic based EIS. Anal. Chem. 86, 8553-8562 (2014). doi: 10.1021/ac501348n