[1] Leendertz, J. A. Interferometric displacement measurement on scattering surfaces utilizing speckle effect. Journal of Physics E:Scientific Instruments 3, 214-218 (1970). doi: 10.1088/0022-3735/3/3/312
[2] Erf, R. K. (Ed.) Speckle Metrology. (New York: Academic Press, 1978).
[3] Sirohi, R. S. (Ed.) Speckle Metrology. (New York: CRC Press, 1993).
[4] Patorski, K. & Kujawinska, M. Handbook of the Moiré Fringe Technique. (Amsterdam: Elsevier, 1993).
[5] Kaufmann, G. H. (Ed.), Advances in Speckle Metrology and Related Techniques-. (Weinheim: Wiley-VCH 2011).
[6] Viotti, M. R. & Albertazzi, A. Jr. Robust Speckle Metrology: Techniques for Stress Analysis and NDT. (Bellingham: SPIE Press, 2014).
[7] Sollid, J. E. Holographic interferometry applied to measurements of small static displacements of diffusely reflecting surfaces. Applied Optics 8, 1587-1595 (1969). doi: 10.1364/AO.8.001587
[8] Leendertz, J. A. & Butters, J. N. An image-shearing speckle-pattern interferometer for measuring bending moments. Journal of Physics E:Scientific Instruments 6, 1107-1110 (1973). doi: 10.1088/0022-3735/6/11/019
[9] Hung, Y. Y. & Taylor, C. E. Speckle-shearing interferometric camera -- a tool for measurement of derivatives of surface-displacement. Proceedings of SPIE 0041, Developments in Laser Technology II. San Diego, United States: SPIE, 1973.
[10] Hung, Y. Y. A speckle-shearing interferometer: a tool for measuring derivatives of surface displacement. Optics Communications 11, 132-135 (1974). doi: 10.1016/0030-4018(74)90200-4
[11] Hung, Y. Y. & Taylor, C. E. Measurement of slopes of structural deflections by speckle-shearing interferometry. Experimental Mechanics 14, 281-285 (1974). doi: 10.1007/BF02322832
[12] Hariharan, P. Speckle-shearing interferometry: a simple optical system. Applied Optics 14, 2563 (1975). doi: 10.1364/AO.14.002563
[13] Hung, Y. Y., Rowlands, R. E. & Daniel, I. M. Speckle-shearing interferometric technique: a full-field strain gauge. Applied Optics 14, 618-622 (1975). doi: 10.1364/AO.14.000618
[14] Debrus, S. Speckle shearing interferometer using a Savart plate. Optics Communications 20, 257-261 (1977). doi: 10.1016/0030-4018(77)90346-7
[15] Assa, A., Betser, A. A. & Politch, J. Recording slope and curvature contours of flexed plates using a grating shearing interferometer. Applied Optics 16, 2504-2513 (1977). doi: 10.1364/AO.16.002504
[16] Hovanesian, J. D., Hung, Y. Y. & Durelli, A. J. New optical method to determine vibration induced strains with variable sensitivity after recording. Proceedings of the Conference on Experimental Stress Analysis. Smolenice, Czechoslovakia, 1978.
[17] Hung, Y. Y. et al. Optical method for measuring contour slopes of an object. Applied Optics 17, 128-131 (1978). doi: 10.1364/AO.17.000128
[18] Hung, Y. Y. & Durelli, A. J. Simultaneous measurement of three displacement derivatives using a multiple image-shearing interferometric camera. The Journal of Strain Analysis for Engineering Design 14, 81-88 (1979). doi: 10.1243/03093247V143081
[19] Hung, Y. Y. & Liang, C. Y. Image-shearing camera for direct measurement of surface strains. Applied Optics 18, 1046-1051 (1979). doi: 10.1364/AO.18.001046
[20] Nakadate, S., Yatagai T. & Saito, H. Digital speckle-pattern shearing interferometry. Applied Optics 19, 4241-4246 (1980). doi: 10.1364/AO.19.004241
[21] Hung, Y. Y. Shearography: a new optical method for strain measurement and nondestructive testing. Optical Engineering 21, 391-395 (1982).
[22] Murthy, R. K., Sirohi, R. S. & Kothiyal, M. P. Speckle shearing interferometry: a new method. Applied Optics 21, 2865-2867 (1982). doi: 10.1364/AO.21.002865
[23] Murthy, R. K., Sirohi, R. S. & Kothiyal, M. P. Detection of defects in plates and diaphragms using a split-lens speckle-shearing interferometer. NDT International 15, 329-333 (1982). doi: 10.1016/0308-9126(82)90070-0
[24] Mohanty, R. K., Joenathan, C. & Sirohi, R. S. Speckle-shear interferometry with double dove prisms. Optics Communications 47, 27-30 (1983). doi: 10.1016/0030-4018(83)90330-9
[25] Mohanty, R. K., Joenathan, C. & Sirohi, R. S. Measurement of tilt with speckle-shear interferometry. Journal of Optics 12, 118-121 (1983). doi: 10.1007/BF03549086
[26] Joenathan, C., Mohanty, R. K. & Sirohi, R. S. Multiplexing in speckle shear interferometry. Optica Acta:International Journal of Optics 31, 681-692 (1984). doi: 10.1080/713821556
[27] Sharma, D. K., Sirohi, R. S. & Kothiyal, M. P. Non destructive testing of a diaphragm by multiaperture speckle shearing technique. Optik 66, 133-136 (1984).
[28] Sirohi, R. S. Speckle shear interferometry. Optics & Laser Technology 16, 251-254 (1984).
[29] Murthy, R. K., Mohanty, R. K., Sirohi, R. S. & Kothiyal, M. P. Radial speckle shearing interferometer and its engineering applications. Optik 67, 85-94 (1984).
[30] Iwahashi, Y., Iwata, K. & Nagata, R. Single-aperture speckle shearing interferometry with a single grating. Applied Optics 23, 247-249 (1984). doi: 10.1364/AO.23.000247
[31] Mohanty, R. K., Joenathan. C. & Sirohi, R. S. Speckle fringe sharpening in speckle shear interferometry. Journal of Optics 13, 49-51 (1984).
[32] Sharma, D. K., Sirohi, R. S. & Kothiyal, M. P. Simultaneous measurement of slope and curvature with a three-aperture speckle shearing interferometer. Applied Optics 23, 1542-1546 (1984). doi: 10.1364/AO.23.001542
[33] Joenathan, C., Mohanty, R. K. & Sirohi, R. S. On the methods of multiplexing in speckle shear interferometry. Optik 69, 8-12 (1984).
[34] Sharma, D. K., Sirohi, R. S. & Kothiyal, M. P. Multiaperture speckle shearing arrangements for stress analysis. Optics Communications 49, 313-317 (1984). doi: 10.1016/0030-4018(84)90239-6
[35] Joenathan, C., Mohanty, R. K. & Sirohi, R. S. Curvature by halo combination in speckle shear interferometry. Journal of Optics 13, 114-119 (1984). doi: 10.1007/BF03549114
[36] Mohanty, R. K., Joenathan. C. & Sirohi, R. S. Fringe sharpening and information coupling in speckle shear interferometry. Applied Optics 23, 4596-4600 (1984). doi: 10.1364/AO.23.004596
[37] Joenathan, C., Mohanty, R. K. & Sirohi, R. S. Hololens in speckle and speckle shear interferometry. Applied Optics 24, 1294-1298 (1985). doi: 10.1364/AO.24.001294
[38] Joenathan, C. & Sirohi, R. S. Holographic gratings in speckle shearing interferometry. Applied Optics 24, 2750-2751 (1985). doi: 10.1364/AO.24.002750
[39] Mohanty, R. K., Joenathan. C. & Sirohi, R. S. Speckle and speckle-shearing interferometers combined for the simultaneous determination of out-of-plane displacement and slope. Applied Optics 24, 3106-3109 (1985). doi: 10.1364/AO.24.003106
[40] Takezaki J. & Hung, Y. Y. Direct measurement of flexural strains in plates by shearography. Journal of Applied Mechanics 53, 125-129 (1986). doi: 10.1115/1.3171698
[41] Sharma, D. K., Mohan, N. K. & Sirohi, R. S. A holographic speckle shearing technique for the measurement of out-of-plane displacement, slope and curvature. Optics Communications 57, 230-235 (1986). doi: 10.1016/0030-4018(86)90088-X
[42] Pyzin, G. P., Artemenko, S. B. & Ignatev, A. G. Compensation for rigid and deformational displacements in speckle-shearing interferometry. Soviet Physics Technical Physics 31, 528-530 (1986).
[43] Iwahashi, Y., Iwata, K. & Nagata, R. Simultaneous measurement of three slope distributions with single-aperture speckle shearing interferometer. Applied Optics 25, 328-329 (1986). doi: 10.1364/AO.25.000328
[44] Templeton, D. W. & Hung, Y. Y. Computerization of data deduction in shearography. Proceedings of SPIE 0814, Photomechanics and Speckle Metrology. San Diego, CA, United States: SPIE, 1987.
[45] Hung, Y. Y. Nondestructive evaluation by electronic shearography. Proceedings of the 16th Symposium on Nondestructive Evaluation. San Antonio, Texas, 1987.
[46] Hung, M. Y. Y. et al. Fast detection of residual stresses by shearography. Proceedings of SPIE 0955, Industrial Laser Interferometry II. Dearborn, MI, United States: SPIE, 1988.
[47] Hung, Y. Y., Hovanesian, J. D. & Takezaki, J. A fringe carrier technique for unambiguous determination of fringe orders in shearography. Optics and Lasers in Engineering 8, 73-81 (1988). doi: 10.1016/0143-8166(88)90044-9
[48] Ganesan, A. R., Joenathan. C. & Sirohi, R. S. Sharpening of fringes in digital speckle pattern interferometry. Applied Optics 27, 2099-2100 (1988). doi: 10.1364/AO.27.002099
[49] Ganesan, A. R., Sharma, D. K. & Kothiyal, M. P. Universal digital speckle shearing interferometer. Applied Optics 27, 4731-4734 (1988). doi: 10.1364/AO.27.004731
[50] Winther, S. 3D strain measurements using ESPI. Optics and Lasers in Engineering 8, 45-57 (1988). doi: 10.1016/0143-8166(88)90006-1
[51] Yamaguchi, I., Takemori, T. & Kobayashi, K. Stabilized and accelerated speckle strain gauge. Proceedings of SPIE 1162, Laser Interferometry: Quantitative Analysis of Interferograms: Third in a Series. San Diego, United States: SPIE, 1989.
[52] Hung, Y. Y. Shearography: a novel and practical approach for nondestructive inspection. Journal of Nondestructive Evaluation 8, 55-67 (1989). doi: 10.1007/BF00565631
[53] Templeton, D. W. & Hung, Y. Y. Shearographic fringe carrier method for data reduction computerization. Optical Engineering 28, 30-34 (1989).
[54] Lamprecht, H. A. & van Rooyen, E. Sandwich shearography: a technique for the cancellation of unknown rigid body displacements in shearography. Proceedings of SPIE 1162, Laser Interferometry: Quantitative Analysis of Interferograms: Third in a Series. San Diego, United States: SPIE, 1989.
[55] Klumpp, P. A. Simple spatial filtering for shearograms. Optics & Laser Technology 21, 105-111 (1989).
[56] Hung, Y. Y. & Hovanesian, J. D. Fast detection of residual stresses in an industrial environment by thermoplastic-based shearography. Proceedings of 1990 SEM Spring Conference on Experimental Mechanics, Albuquerque. Bethel: SEM, 1990.
[57] Joenathan, C. & Torroba, R. Simple electronic speckle-shearing-pattern interferometer. Optics Letters 15, 1159-1161 (1990). doi: 10.1364/OL.15.001159
[58] Aiyer, A. A. Shearography: a potential portable on-site nondestructive evaluation inspection tool. Proceedings of SPIE 1212, Practical Holography IV. Los Angeles, CA, United States: SPIE, 1990.
[59] Toh, S. L. et al. Application of shearography in nondestructive testing of composite plates. Journal of Materials Processing Technology 23, 267-275 (1990). doi: 10.1016/0924-0136(90)90245-P
[60] Tay, C. J. et al. The measurement of slope using shearography. Optics and Lasers in Engineering 14, 13-24 (1991). doi: 10.1016/0143-8166(91)90035-R
[61] Owner-Petersen, M. Digital speckle pattern shearing interferometry: limitations and prospects. Applied Optics 30, 2730-2738 (1991). doi: 10.1364/AO.30.002730
[62] Kadono, H., Toyooka, S. & Iwasaki, Y. Speckle-shearing interferometry using a liquid-crystal cell as a phase modulator. Journal of the Optical Society of America A 8, 2001-2008 (1991). doi: 10.1364/JOSAA.8.002001
[63] Toh, S. L. et al. Flaw detection in composites using time-average shearography. Optics & Laser Technology 23, 25-30 (1991).
[64] Newman, J. W. Shearographic inspection of aircraft structure. Materials Evaluation 49, 1106-1109 (1991).
[65] Long, K., Hung, Y. Y. & Der Hovanesian, J. Measurement of residual stresses in plastic materials by electronic shearography. Proceedings of SPIE 1554, Second International Conference on Photomechanics and Speckle Metrology. San Diego, CA, United States: SPIE, 1991.
[66] Yamaguchi, I. & Kobayashi, K. Material testing by the laser speckle strain gauge. Proceedings of SPIE 1554, Second International Conference on Photomechanics and Speckle Metrology. San Diego, CA, United States: SPIE, 1991.
[67] Shang, H. M. et al. Interpretation of holographic and shearographic fringes for estimating the size and depth of debonds in laminated plates. Proceedings of SPIE 1554, Second International Conference on Photomechanics and Speckle Metrology. San Diego, CA, United States: SPIE, 1991.
[68] Hung, Y. Y. Electronic shearography versus ESPI in nondestructive evaluation. Proceedings of SPIE 1554, Second International Conference on Photomechanics and Speckle Metrology. San Diego, CA, United States: SPIE, 1991.
[69] Shang, H. M., Soh, C. C. & Chau, F. S. The use of carrier fringes in shearography for locating and sizing debonds in GRP plates. Composites Engineering 1, 157-165 (1991). doi: 10.1016/0961-9526(91)90016-L
[70] Qin, Y. W., Wang, J. Q. & Ji, X. H. Study of electronic shearing speckle technique. Proceedings of SPIE 1554, Second International Conference on Photomechanics and Speckle Metrology. San Diego, CA, United States: SPIE, 1991.
[71] Xu, B. Q. & Wu, X. P. Fringe formation in speckle shearing interferometry. Proceedings of SPIE 1554, Second International Conference on Photomechanics and Speckle Metrology. San Diego, CA, United States: SPIE, 1991.
[72] Hung, Y. Y. Electronic shearography for measurement of time-dependent deformation. Proceedings of the VII International Congress on Experimental Mechanics, vol. 2. Las Vegas, Nevada, 1992.
[73] Tay, C. J. et al. Measurements of surface coordinates and slopes by shearography. Optics & Laser Technology 24, 209-213 (1992).
[74] Chau, F. S. & Ng, T. W. A real-time digital shearing speckle interferometer. Measurement Science and Technology 3, 381-383 (1992). doi: 10.1088/0957-0233/3/4/008
[75] Ng, T. W. & Chau, F. S. Suppression of fringe-modulating in-plane displacement fields in shearing speckle interferometry. Proceedings of SPIE 1821, Industrial Applications of Optical Inspection, Metrology, and Sensing. Boston, MA, United States: SPIE, 1992.
[76] Chau, F. S. & Ng, T. W. Determining the optimum image recording conditions in shearography based on spatial frequency considerations. Proceedings of SPIE 1821, Industrial Applications of Optical Inspection, Metrology, and Sensing. Boston, MA, United States: SPIE, 1992.
[77] Tyson II, J. & Feferman, B. Inspection of Fabricated Fuselage Panels Using Electronic Shearography. Report AD-A257639 (1992).
[78] Pryputniewicz, R. J. Electronic shearography and electronic holography working side by side. Proceedings of SPIE 1821, Industrial Applications of Optical Inspection, Metrology, and Sensing. Boston, MA, United States: SPIE, 1992.
[79] Tay, C. J. et al. Curvature measurement of hydroformed axisymmetrical shells using shearography. Experimental Techniques 17, 27-30 (1993).
[80] Spooren, R., Dyrseth, A. A. & Vaz, M. Electronic shear interferometry: application of a (double-) pulsed laser. Applied Optics 32, 4719-4127 (1993). doi: 10.1364/AO.32.004719
[81] Deaton, J. B. Jr. & Rogowski, R. S. Applications of electronic shearography for the inspection of airskin structures. Proceedings of SPIE 2001, Nondestructive Inspection of Aging Aircraft. San Diego, CA, United States: SPIE, 1993.
[82] Wang, B. S. & Zhang, X. Electronic speckle carrier shearography for automated deformation measurement. Proceedings of SPIE 2003, Interferometry VI: Techniques and Analysis. San Diego, CA, United States: SPIE, 1993.
[83] Deaton, J. B. Jr. & Rogowski, R. S. Electronic shearography for nondestructive evaluation: the influence of the field of view and the shearing angle. Proceedings of SPIE 2066, Industrial Optical Sensing and Metrology: Applications and Integration. Boston, MA, United States: SPIE, 1993.
[84] Ng, T. W. & Chau, F. S. Performance of charge-coupled devices in digital shearography. Proceedings of SPIE 2066, Industrial Optical Sensing and Metrology: Applications and Integration. Boston, MA, United States: SPIE, 1993.
[85] Safai, M. Nondestructive evaluation of aircraft fuselage panels with electronic shearography. Proceedings of SPIE 2066, Industrial Optical Sensing and Metrology: Applications and Integration. Boston, MA, United States: SPIE, 1993.
[86] Mohan, N. K., Saldner, H. O. & Molin, N. E. Electronic shearography applied to static and vibrating objects. Optics Communications 108, 197-202 (1994). doi: 10.1016/0030-4018(94)90648-3
[87] Ng, T. W. & Chau, F. S. A digital shearing speckle interferometry technique for modal analysis. Applied Acoustics 42, 175-185 (1994). doi: 10.1016/0003-682X(94)90006-X
[88] Hung, Y. Y. & Long, K. Evaluation of residual stress in concrete structures by digital shearography. Proceedings of SPIE 2004, Interferometry VI: Applications. San Diego, CA, United States: SPIE, 1993.
[89] Maji, A. K., Satpathi, D. & Zawaydeh, S. Electronic shearography for inspecting steel bridges: a feasibility study. Proceedings of SPIE 2004, Interferometry VI: Applications. San Diego, CA, United States: SPIE, 1993.
[90] Ettemeyer, A. Nondestructive inspection with shearography. Proceedings of SPIE 2248, Optical Measurements and Sensors for the Process Industries. Frankfurt, Germany: SPIE, 1994.
[91] Mohan, N. K. et al. Separation of the influence of in-plane displacement in multiaperture speckle shear interferometry. Optical Engineering 33, 1973-1982 (1994). doi: 10.1117/12.167154
[92] Shakher, C. & Nirala, A. K. Measurement of temperature using speckle shearing interferometry. Applied Optics 33, 2125-2127 (1994). doi: 10.1364/AO.33.002125
[93] Hung, Y. Y., Tang, S. & Hovanesian, J. D. Real-time shearography for measuring time-dependent displacement derivatives. Experimental Mechanics 34, 89-92 (1994). doi: 10.1007/BF02328445
[94] Tay, C. J. et al. On the determination of slope by shearography. Optics and Lasers in Engineering 20, 207-217 (1994). doi: 10.1016/S0143-8166(94)90014-0
[95] Tay, C. J. et al. Direct determination of second-order derivatives in plate bending using multiple-exposure shearography. Optics & Laser Technology 26, 91-98 (1994).
[96] Valera, J. D. & Jones, J. D. C. Phase stepping in fiber-based speckle shearing interferometry. Optics Letters 19, 1161-1163 (1994). doi: 10.1364/OL.19.001161
[97] Steinchen, W. et al. Electronic shearography (ESPSI) for direct measurement of strains. Proceedings of SPIE 2248, Optical Measurements and Sensors for the Process Industries. Frankfurt, Germany: SPIE, 1994.
[98] Bird, L. Evaluating laser shearography for nondestructive testing at the Kennedy Space Center. Proceedings of SPIE 2349, Industrial Optical Sensors for Metrology and Inspection. Boston, MA, United States: SPIE, 1994.
[99] Schulz, B. Electronic speckle pattern interferometrie through shearography. Proceedings of SPIE 2358, First International Conference on Vibration Measurements by Laser Techniques: Advances and Applications. Ancona, Italy: SPIE, 1994.
[100] del Carretto, P. & Perlo, P. P. Compact multibeam shearography for deformation and vibration observation. Proceedings of SPIE 2358, First International Conference on Vibration Measurements by Laser Techniques: Advances and Applications. Ancona, Italy: SPIE, 1994.
[101] Satpathi, D. & Maji, A. K. Electronic shearography for bridge inspection. Proceedings of SPIE 2446, Smart Structures and Materials 1995: Smart Systems for Bridges, Structures, and Highways. San Diego, CA, United States: SPIE, 1995.
[102] Davis, C. K. et al. Shearographic nondestructive evaluation of Space Shuttle thermal protection systems. Proceedings of SPIE 2455, Nondestructive Evaluation of Aging Aircraft, Airports, Aerospace Hardware, and Materials. Oakland, CA, United States: SPIE, 1995.
[103] Newman, J. W. Shearography nondestructive evaluation techniques for aerospace. Proceedings of SPIE 2455, Nondestructive Evaluation of Aging Aircraft, Airports, Aerospace Hardware, and Materials. Oakland, CA, United States: SPIE, 1995.
[104] Bohn, C. E. Shearographic nondestructive inspection on the B-2 program. Proceedings of SPIE 2455, Nondestructive Evaluation of Aging Aircraft, Airports, Aerospace Hardware, and Materials. Oakland, CA, United States: SPIE, 1995.
[105] Hung, Y. Y. Automated shearography for nondestructive evaluation and strain measurement. Proceedings of SPIE 2455, Nondestructive Evaluation of Aging Aircraft, Airports, Aerospace Hardware, and Materials. Oakland, CA, United States: SPIE, 1995.
[106] Spicer, J. W. M. et al. Thermal stressing techniques for flaw characterization with shearography. Proceedings of SPIE 2455, Nondestructive Evaluation of Aging Aircraft, Airports, Aerospace Hardware, and Materials. Oakland, CA, United States: SPIE, 1995.
[107] Chatters, T. C., Pouet, B. F. & Krishnaswamy, S. Additive-subtractive phase-modulated shearography with synchronized acoustic stressing. Experimental Mechanics 35, 159-165 (1995). doi: 10.1007/BF02326475
[108] Shang, H. M., Tham, L. M. & Chau, F. S. Shearographic and holographic assessment of defective laminates with bond-lines of different elasticities. Journal of Engineering Materials and Technology 117, 322-329 (1995). doi: 10.1115/1.2804546
[109] Lape, D., Newman, J. W. & Craig, D. Advanced laser shearography inspection of turbo-fan engine composite fan cases. Proceedings of SPIE 2455, Nondestructive Evaluation of Aging Aircraft, Airports, Aerospace Hardware, and Materials. Oakland, CA, United States: SPIE, 1995.
[110] Sim, C. W., Chau, F. S. & Toh, S. L. Determination of fractional fringe order by phase shifting in real-time shearography. Journal of Modern Optics 42, 271-277 (1995). doi: 10.1080/09500349514550261
[111] Steinchen, W. et al. Out-of-plane and in-plane strain measured by shearography. Proceedings of SPIE 2509, Smart Structures: Optical Instrumentation and Sensing Systems. Munich, Germany: SPIE, 1995.
[112] Yang, L. X. et al. Precision measurement and nondestructive testing by means of digital phase shifting speckle pattern and speckle pattern shearing interferometry. Measurement 16, 149-160 (1995). doi: 10.1016/0263-2241(95)00020-0
[113] Huang, J. R. & Tatam, R. P. Optoelectronic shearography: two wavelength slope measurement. Proceedings of SPIE 2544, Interferometry VII: Techniques and Analysis. San Diego, CA, United States: SPIE, 1995.
[114] Griffen, C. T., Hung, Y. Y. & Chen, F. Three-dimensional shape measurement using digital shearography. Proceedings of SPIE 2545, Interferometry VII: Applications. San Diego, CA, United States: SPIE, 1995.
[115] Hung, Y. Y. & Griffen, C. T. Digital shearography versus TV-holography for vibration measurement. Proceedings of the 15th Biennial Conference on Mechanical Vibration and Noise and 1995 ASME Design Engineering Technical Conferences, Vol. 3. Boston, Massachusetts, 1995.
[116] Ng, T. W. Shear measurement in digital speckle shearing interferometry using digital correlation. Optics Communications 115, 241-244 (1995). doi: 10.1016/0030-4018(94)00702-V
[117] Chen, F., Griffen, C. T. & Hung, Y. Y. Stroboscopic phase shifting shearography for automated vibration measurement. Proceedings of the 15th Biennial Conference on Mechanical Vibration and Noise and 1995 ASME Design Engineering Technical Conferences, Vol. 3. Boston, Massachusetts, 1995.
[118] Steinchen, W. et al. Application of shearography to quality assurance. Journal of Materials Processing Technology 52, 141-150 (1995). doi: 10.1016/0924-0136(94)01435-4
[119] Tay, C. J. et al. Multiple-image shearography: a direct method to determine curvatures. Applied Optics 34, 2202-2206 (1995). doi: 10.1364/AO.34.002202
[120] Valera, J. D. R. & Jones, J. D. C. Vibration analysis by modulated time-averaged speckle shearing interferometry. Measurement Science and Technology 6, 965-970 (1995). doi: 10.1088/0957-0233/6/7/017
[121] Buerkle, L. & Joenathan, C. Electronic speckle pattern shearing interferometer using a holographic grating. Proceedings of SPIE 2622, Optical Engineering Midwest '95. Chicago, IL, United States: SPIE, 1995.
[122] Griffen, C. T., Chen, F. & Hung, Y. Y. Measurement of time-dependent displacement using dual speckle pattern phase-shifting TV holography. Proceedings of SPIE 2622, Optical Engineering Midwest '95. Chicago, IL, United States: SPIE, 1995.
[123] Steinchen, W., Yang, L. X. & Kupfer, G. Vibration analysis by digital shearography. Proceedings of SPIE 2868, Second International Conference on Vibration Measurements by Laser Techniques: Advances and Applications. Ancona, Italy: SPIE, 1996.
[124] Valera, J. D. R., Jones, J. D. C. & Løkberg, O. J. Exact vibration amplitude derivative measurement with TV shearography. Measurement Science and Technology 7, 918-922 (1996). doi: 10.1088/0957-0233/7/6/010
[125] Hung, Y. Y., Griffen, C. T. & Chen, F. High speed shearography for measuring transient deformation and vibration. Proceedings of the VIII International Congress on Experimental Mechanicals. Nashville, Tennessee, 1996.
[126] Pedrini, G., Zou, Y. L. & Tiziani, H. J. Quantitative evaluation of digital shearing interferogram using the spatial carrier method. Pure and Applied Optics:Journal of the European Optical Society Part A 5, 313-321 (1996). doi: 10.1088/0963-9659/5/3/008
[127] Bisle, W. J., Scherling, D. & Tober, G. Phase stepping shearography for testing commercial aircraft structures: an application review of advanced image processing techniques for shearography. in Review of Progress in Quantitative Nondestructive Evaluation (eds Thompson, D. O. & Chimenti, D. E.) (Boston: Springer, 1996).
[128] Santhanakrishnan, T. et al. Slope change contouring for 3D deeply curved objects by multi-aperture speckle shear interferometry. Optik 104, 27-31 (1996).
[129] Long, K. W. 3-Beam phase shift shearography for simultaneous measurement of in-plane and out-of-plane displacements and its applications to residual stress measurements. PhD thesis, Oakland University, 1996.
[130] Burnett, M. & Bryanston-Cross, P. J. Measurements of transonic shock structures using shearography. Proceedings of SPIE 2861, Laser Interferometry VIII: Applications. Denver, CO, United States: SPIE, 1996.
[131] Mohan, N. K., Saldner, H. O. & Molin, N. E. Recent applications of TV holography and shearography. Proceedings of SPIE 2861, Laser Interferometry VIII: Applications. Denver, CO, United States: SPIE, 1996.
[132] Rabal, H., Henao, R. & Torroba, R. Digital speckle pattern shearing interferometry using diffraction gratings. Optics Communications 126, 191-196 (1996). doi: 10.1016/0030-4018(96)00017-X
[133] Hung, Y. Y. & Wang, J. Q. Dual-beam phase shift shearography for measurement of in-plane strains. Optics and Lasers in Engineering 24, 403-413 (1996). doi: 10.1016/0143-8166(95)00098-4
[134] Chen, L. X. Complementary use of TV-holography/shearography and ultrasonic techniques for NDE of fiber-reinforced plastics. Proceedings of SPIE 2944, Nondestructive Evaluation of Materials and Composites. Scottsdale, AZ, United States: SPIE, 1996.
[135] Huang, J. R., Ford, H. D. & Tatam, R. P. Heterodyning of speckle shearing interferometers by laser diode wavelength modulation. Measurement Science and Technology 7, 1721-1727 (1996). doi: 10.1088/0957-0233/7/12/005
[136] Steinchen, W., Yang, L. X. & Schuth, M. TV-shearography for measuring 3D-strains. Strain 32, 49-57 (1996). doi: 10.1111/j.1475-1305.1996.tb00997.x
[137] Waldner, S. Removing the image-doubling in shearography by reconstruction of the displacement field. Optics Communications 127, 117-126 (1996). doi: 10.1016/0030-4018(96)00109-5
[138] Waldner, S. Removing the image-doubling in shearography: theory and application. Proceedings of SPIE 2944, Nondestructive Evaluation of Materials and Composites. Scottsdale, AZ, United States: SPIE, 1996.
[139] Hung, Y. Y. Shearography for non-destructive evaluation of composite Structures. Optics and Lasers in Engineering 24, 161-182 (1996). doi: 10.1016/0143-8166(95)00020-8
[140] Rastogi, P. K. Measurement of curvature and twist of a deformed object by electronic speckle-shearing pattern interferometry. Optics Letters 21, 905-907 (1996). doi: 10.1364/OL.21.000905
[141] Huang, J. R., Ford, H. D. & Tatam, R. P. Phase-stepped speckle shearing interferometer by source wavelength modulation. Optics Letters 21, 1421-1423 (1996). doi: 10.1364/OL.21.001421
[142] Hung, Y. Y. Shearography and applications in experimental mechanics. Proceedings of SPIE 2921, International Conference on Experimental Mechanics: Advances and Applications. Singapore, Singapore: SPIE, 1996.
[143] Weijers, A. L., van Brug, H. H. & Frankena, H. J. Real-time deformation measurement using a transportable shearography system. Proceedings of SPIE 2921, International Conference on Experimental Mechanics: Advances and Applications. Singapore, Singapore: SPIE, 1996.
[144] Tay, C. J., Shang, H. M. & Choong, D. Triple-exposure shearography for the measurement of surface slopes. Proceedings of SPIE 2921, International Conference on Experimental Mechanics: Advances and Applications. Singapore, Singapore: SPIE, 1996.
[145] Xie, L., Chau, F. S. & Toh, S. L. Nondestructive testing and evaluation using phase-shifting electronic shearography. Proceedings of SPIE 2921, International Conference on Experimental Mechanics: Advances and Applications. Singapore, Singapore: SPIE, 1996.
[146] Gundlach, A. et al. Speckle shearing interferometry using a diffractive optical beam splitter. Optical Engineering 36, 1488-1493 (1997). doi: 10.1117/1.601351
[147] Wu, X. P., Fu, S. J. & Pang, L. Y. Special Ronchi grating as the shearing element of shearing ESPI for nondestructive testing. Proceedings of SPIE 2921, International Conference on Experimental Mechanics: Advances and Applications. Singapore, Singapore: SPIE, 1996.
[148] Lee, H., Wang, L. S. & Krishnaswamy, S. Fourier processing of shearing interferometric fringe patterns. Proceedings of SPIE 2921, International Conference on Experimental Mechanics: Advances and Applications. Singapore, Singapore: SPIE, 1996.
[149] Shu, Y., Chau, F. S. & Toh, S. L. Precision phase measurement in digital speckle shearing interferometry. Proceedings of SPIE 2921, International Conference on Experimental Mechanics: Advances and Applications. Singapore, Singapore: SPIE, 1996.
[150] Sirohi, R. S. et al. Spatial phase shifting for pure in-plane displacement and displacement-derivative measurements in electronic speckle pattern interferometry (ESPI). Applied Optics 36, 5787-5791 (1997). doi: 10.1364/AO.36.005787
[151] Bison, P. G. et al. NDE of composite materials by thermal method and shearography. Proceedings of SPIE 3056, Thermosense XIX: an International Conference on Thermal Sensing and Imaging Diagnostic Applications. Orlando, FL, United States: SPIE, 1997.
[152] Patorski, K. & Olszak, A. G. Digital in-plane electronic speckle pattern shearing interferometry. Optical Engineering 36, 2010-2015 (1997). doi: 10.1117/1.601386
[153] Joenathan, C. & Buerkle, L. Electronic speckle pattern shearing interferometer using holographic gratings. Optical Engineering 36, 2473-2477 (1997). doi: 10.1117/1.601472
[154] Dymny, G., Kujawinska, M. & Waldner, S. Modified electronic speckle pattern shearing interferometry for simultaneous derivative map measurements. Proceedings of SPIE 3098, Optical Inspection and Micromeasurements II. Munich, Germany: SPIE, 1997.
[155] Steinchen, W. et al. Vibration analysis by digital speckle pattern shearing interferometry. Proceedings of SPIE 3098, Optical Inspection and Micromeasurements II. Munich, Germany: SPIE, 1997.
[156] Rastogi, P. K. An electronic pattern speckle shearing interferometer for the measurement of surface slope variations of three-dimensional objects. Optics and Lasers in Engineering 26, 93-100 (1997). doi: 10.1016/0143-8166(95)00106-9
[157] Petzing, J. N. & Tyrer, J. R. Analysis of Power ultrasonic components using shearing interferometry. Optics and Lasers in Engineering 26, 235-248 (1997). doi: 10.1016/0143-8166(95)00115-8
[158] Hung, Y. Y., Wang, J. Q. & Hovanesian, J. D. Technique for compensating excessive rigid body motion in nondestructive testing of large structures using shearography. Optics and Lasers in Engineering 26, 249-258 (1997). doi: 10.1016/0143-8166(95)00116-6
[159] Tay, C. J., Shang, H. M. & Choong, D. Cross influence of coordinate and slope related fringes during shearographic profiling. Optics and Lasers in Engineering 26, 259-278 (1997). doi: 10.1016/0143-8166(95)00117-4
[160] Nakadate, S. Phase shifting speckle shearing polarization interferometer using a birefringent wedge. Optics and Lasers in Engineering 26, 331-350 (1997). doi: 10.1016/0143-8166(95)00137-9
[161] Maas, A. A. M. & Somers, P. A. A. M. Two-dimensional deconvolution applied to phase-stepped shearography. Optics and Lasers in Engineering 26, 351-360 (1997). doi: 10.1016/0143-8166(95)00138-7
[162] Valera, J. D. R. et al. Strain and vibration analysis by fibre based speckle shearing interferometry. Optics and Lasers in Engineering 26, 361-376 (1997). doi: 10.1016/0143-8166(95)00144-1
[163] Tyrer, J. R. & Petzing, J. N. In-plane electronic speckle pattern shearing interferometry. Optics and Lasers in Engineering 26, 395-406 (1997). doi: 10.1016/0143-8166(95)00139-5
[164] Aebischer, H. A. & Waldner, S. Strain distributions made visible with image-shearing speckle pattern interferometry. Optics and Lasers in Engineering 26, 407-420 (1997). doi: 10.1016/0143-8166(95)00140-9
[165] Hung, Y. Y. Digital shearography versus TV-holography for non-destructive evaluation. Optics and Lasers in Engineering 26, 421-436 (1997). doi: 10.1016/0143-8166(95)00141-7
[166] Mohan, N. K. & Sirohi, R. S. Fringe formation in symmetric three-aperture speckle shear interferometry: an analysis. Optics and Lasers in Engineering 26, 437-447 (1997). doi: 10.1016/0143-8166(95)00142-5
[167] Ng, T. W. Optical distance sensing using digital speckle shearing interferometry. Optics and Lasers in Engineering 26, 449-460 (1997). doi: 10.1016/0143-8166(95)00143-3
[168] Toh, S. L., Chau, F. S. & Sim, C. W. Theoretical basis for real-time shearography. Journal of Modern Optics 44, 279-286 (1997). doi: 10.1080/09500349708241870
[169] Santhanakrishnan, T., Mohan, N. K. & Sirohi, R. S. Oblique observation speckle shear interferometers for slope change contouring. Journal of Modern Optics 44, 831-839 (1997). doi: 10.1080/09500349708230698
[170] Sirohi, R. S. & Mohan, N. K. An in-plane insensitive multiaperture speckle shear interferometer for slope measurement. Optics & Laser Technology 29, 415-417 (1997).
[171] Hathaway, R. B., Hovanesian, J. D. & Hung, M. Y. Y. Residual stress evaluation using shearography with large-shear displacements. Optics and Lasers in Engineering 27, 43-60 (1997). doi: 10.1016/S0143-8166(95)00011-9
[172] Hung, M. Y. Y., Long, K. W. & Wang, J. Q. Measurement of residual stress by phase shift shearography. Optics and Lasers in Engineering 27, 61-73 (1997). doi: 10.1016/S0143-8166(95)00013-5
[173] Hung, Y. Y. Automated nondestructive shearographic inspection of debonds in composites using multi-frequency vibrational stressing. Proceedings of 1997 SEM Spring Conference. Bellevue, Washington, 1997.
[174] Huang, J. R., Ford, H. D. & Tatam, R. P. Slope measurement by two-wavelength electronic shearography. Optics and Lasers in Engineering 27, 321-333 (1997). doi: 10.1016/0143-8166(95)00124-7
[175] Fomitchov, P. A. & Krishnaswamy, S. A compact dual-purpose camera for shearography and electronic speckle-pattern interferometry. Measurement Science and Technology 8, 581-583 (1997). doi: 10.1088/0957-0233/8/5/019
[176] Steinchen, W. et al. Nondestructive testing of microcracks using digital speckle pattern shearing interferometry. Proceedings of SPIE 3098, Optical Inspection and Micromeasurements II. Munich, Germany: SPIE, 1997.
[177] Song, Y. Z. et al. Digital shearing speckle interferometry applied to optical diagnostics in flow. Proceedings of SPIE 3172, Optical Technology in Fluid, Thermal, and Combustion Flow III. San Diego, CA, United States: SPIE, 1997.
[178] Hung, Y. Y. & Shi, D. H. Technique for rapid inspection of hermetic seals of microelectronic packages using shearography. Optical Engineering 37, 1406-1409 (1998). doi: 10.1117/1.601656
[179] Murukeshan, V. M., Seng, O. L. & Asundi, A. Polarization phase shifting shearography for optical metrological applications. Optics & Laser Technology 30, 527-531 (1998).
[180] Hung, Y. Y. Computerized shearography and its application for nondestructive evaluation of composites. in Manual on Experimental Methods of Mechanical Testing of Composites (ed. Jenkins, C. H.) (Society for Experimental Mechanics, 1998).
[181] Santhanakrishnan, T., Palanisamy, P. K. & Sirohi, R. S. Optical configuration in speckle shear interferometry for slope change contouring with a twofold increase in sensitivity. Applied Optics 37, 3447-3449 (1998). doi: 10.1364/AO.37.003447
[182] Lu, G. W., Bard, B. A. & Wu, S. D. Real-time portable phase-stepping shearography system for NDE. Proceedings of SPIE 3397, Nondestructive Evaluation of Aging Aircraft, Airports, and Aerospace Hardware II. San Antonio, TX, United States: SPIE, 1998.
[183] Bard, B. A., Gordon, G. A. & Wu, S. D. Laser-modulated phase-stepping digital shearography for quantitative full-field imaging of ultrasonic waves. The Journal of the Acoustical Society of America 103, 3327-3335 (1998). doi: 10.1121/1.423046
[184] Walz, T. & Ettemeyer, A. Automatic shearography inspection system for helicopter rotor blades. Proceedings of SPIE 3397, Nondestructive Evaluation of Aging Aircraft, Airports, and Aerospace Hardware II. San Antonio, TX, United States: SPIE, 1998.
[185] Steinchen, W. et al. Developmental steps for double-pulse shearography. Proceedings of SPIE 3478, Laser Interferometry IX: Techniques and Analysis. San Diego, CA, United States: SPIE, 1998.
[186] Steinchen, W. et al. Application of laser diodes in digital speckle pattern shearing interferometry. Proceedings of SPIE 3415, Laser Diodes and Applications III. Quebec, Canada: SPIE, 1998.
[187] Steinchen, W. et al. Digital shearography for strain measurement: an analysis of measuring errors. Proceedings of SPIE 3479, Laser Interferometry IX: Applications. San Diego, CA, United States: SPIE, 1998.
[188] Steinchen, W. et al. Strain analysis by means of digital shearography: potential, limitations and demonstration. The Journal of Strain Analysis for Engineering Design 33, 171-182 (1998). doi: 10.1243/0309324981512896
[189] Steinchen, W. et al. Non-destructive testing of aerospace composite materials using digital shearography. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering 212, 21-30 (1998). doi: 10.1243/0954410981532108
[190] Joenathan, C. et al. Novel temporal Fourier transform speckle pattern shearing interferometer. Optical Engineering 37, 1790-1795 (1998). doi: 10.1117/1.601834
[191] Shang, H. M., He, Y. M. & Tay, C. J. Digital shearography for slope measurement. Proceedings of SPIE 3407, International Conference on Applied Optical Metrology. Balatonfured, Hungary: SPIE, 1998.
[192] Sirohi, R. S. et al. An Optical Strain Gauge. Proceedings of SPIE 3407, International Society for Optical Engineering. SPIE, 1998.
[193] Sirohi, R. S. et al. Shear ESPI with small objects. Proceedings of SPIE 3407, International Conference on Applied Optical Metrology. Balatonfured, Hungary: SPIE, 1998.
[194] Fernandez, J. L. et al. Double-pulsed-carrier speckle-shearing pattern interferometry for transient deformation analysis. Proceedings of SPIE 3478, Laser Interferometry IX: Techniques and Analysis. San Diego, CA, United States: SPIE, 1998.
[195] Wong, W. O. & Chan, K. T. Measurement of modal damping by electronic speckle shearing interferometry. Optics & Laser Technology 30, 113-120 (1998).
[196] Dávila, A., Kaufmann, G. H., & Pérez-López, C. Transient deformation analysis by a carrier method of pulsed electronic speckle-shearing pattern interferometry. Applied Optics 37, 4116-4122 (1998). doi: 10.1364/AO.37.004116
[197] Yang, L. X. et al. Vibration analysis by means of digital shearography. Optics and Lasers in Engineering 30, 199-212 (1998).
[198] van Brug, H. Temporal phase unwrapping and its application in shearography systems. Applied Optics 37, 6701-6706 (1998). doi: 10.1364/AO.37.006701
[199] Sirohi, R. S. et al. Nondestructive assessment of thinning of plates using digital shearography. Optical Engineering 38, 1582-1585 (1999). doi: 10.1117/1.602210
[200] He, Y. M., Tay, C. J. & Shang, H. M. Digital phase-shifting shearography for slope measurement. Optical Engineering 38, 1586-1590 (1999). doi: 10.1117/1.602211
[201] Kästle, R., Hack, E. & Sennhauser, U. Multiwavelength shearography for quantitative measurements of two-dimensional strain distributions. Applied Optics 38, 96-100 (1999). doi: 10.1364/AO.38.000096
[202] van Brug, H. H. Real-time speckle shearography system for defect detection in aircraft materials. Proceedings of SPIE 3586, Nondestructive Evaluation of Aging Aircraft, Airports, and Aerospace Hardware III. Newport Beach, CA, United States: SPIE, 1999.
[203] Siebert, T. & Schmitz, B. New shearing setup for simultaneous measurement of two shear directions. Proceedings of SPIE 3637, Practical Holography XIII. San Jose, CA, United States: SPIE, 1999.
[204] James, S. W. & Tatam, R. P. Time-division-multiplexed 3D shearography. Proceedings of SPIE 3744, Interferometry '99: Techniques and Technologies. Pultusk Castle, Poland: SPIE, 1999.
[205] Murukeshan, V. M., Ganesan, A. R. & Sirohi, R. S. Curvature measurement using double shear TV holography. Optik 110, 57-60 (1999).
[206] Waldner, S. & Brem, S. Compact shearography system for the measurement of 3D deformation. Proceedings of SPIE 3745, Interferometry '99: Applications. Pultusk Castle, Poland: SPIE, 1999.
[207] Osten, W., Kalms, M. K. & Jueptner, W. P. O. Some ways to improve the recognition of imperfections in large-scale components using shearography. Proceedings of SPIE 3745, Interferometry '99: Applications. Pultusk Castle, Poland: SPIE, 1999.
[208] Hung, Y. Y. et al. Evaluation of Residual Stresses in Plastics and Composites by Shearography. (SAE International Congress and Exposition, 1999).
[209] Groves, R. M., James, S. W. & Tatam, R. P. Polarization-multiplexed and phase-stepped fiber optic shearography using laser wavelength modulation. Proceedings of SPIE 3745, Interferometry '99: Applications. Pultusk Castle, Poland: SPIE, 1999.
[210] Kalms, M. K. et al. NDT on wide-scale aircraft structures with digital speckle shearography. Proceedings of SPIE 3824, Optical Measurement Systems for Industrial Inspection. Munich, Germany: SPIE, 1999.
[211] Hung, Y. Y. Applications of digital shearography for testing of composite structures. Composites Part B:Engineering 30, 765-773 (1999). doi: 10.1016/S1359-8368(99)00027-X
[212] Steinchen, W. et al. Determination of strain distribution by means of digital shearography. Measurement 26, 79-90 (1999). doi: 10.1016/S0263-2241(99)00008-1
[213] Elster, C. & Weingärtner, I. Solution to the shearing problem. Applied Optics 38, 5024-5031 (1999). doi: 10.1364/AO.38.005024
[214] Parker, S. C. J. & Salter, P. L. A novel shearography system for aerospace non-destructive testing. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering 213, 23-33 (1999). doi: 10.1243/0954410991532819
[215] Osten, W. et al. Shearography system for the testing of large-scale aircraft components taking into account noncooperative surfaces. Proceedings of SPIE 4101, Laser Interferometry X: Techniques and Analysis. San Diego, CA, United States: SPIE, 2000.
[216] Andersson, A. et al. TV shearography: quantitative measurement of shear-magnitude fields by use of digital speckle photography. Applied Optics 39, 2565-2568 (2000). doi: 10.1364/AO.39.002565
[217] Hung, Y. Y. et al. Evaluating the soundness of bonding using shearography. Composite Structures 50, 353-362 (2000). doi: 10.1016/S0263-8223(00)00109-4
[218] Shang, H. M. et al. Surface profiling using shearography. Optical Engineering 39, 23-31 (2000). doi: 10.1117/1.602331
[219] Mohan, N. K. The influence of multiple-exposure recording on curvature pattern using multi-aperture speckle shear interferometry. Optics Communications 186, 259-263 (2000). doi: 10.1016/S0030-4018(00)01072-5
[220] Fernandez, A. et al. Measurement of transient out-of-plane displacement gradients in plates using double-pulsed subtraction TV shearography. Optical Engineering 39, 2106-2113 (2000). doi: 10.1117/1.1305260
[221] Dilhaire, S. et al. Measurement of the thermomechanical strain of electronic devices by shearography. Microelectronics Reliability 40, 1509-1514 (2000). doi: 10.1016/S0026-2714(00)00124-4
[222] Shang, H. M. et al. Generation of carrier fringes in holography and shearography. Applied Optics 39, 2638-2645 (2000). doi: 10.1364/AO.39.002638
[223] Groves, R. M., James, S. W. & Tatam, R. P. Polarization-multiplexed and phase-stepped fibre optic shearography using laser wavelength modulation. Measurement Science and Technology 11, 1389-1395 (2000). doi: 10.1088/0957-0233/11/9/320
[224] Wang, K. F., Tieu, A. K. & Li, E. B. Influence of in-plane displacement and double-aperture orientation on slope fringe formation in double-shearing-aperture speckle interferometry. Opt. Eng. Optical Engineering 39, 2124 (2000).
[225] Lau, B., Kronthaler, T. & Schilling, R. A microprism array as shearing device for speckle shearing interferometry. Optics and Lasers in Engineering 36, 389-396 (2001). doi: 10.1016/S0143-8166(01)00054-9
[226] Chen, F. Digital shearography: state of the art and some applications. Journal of Electronic Imaging 10, 240-251 (2001). doi: 10.1117/1.1329336
[227] Rastogi, P. K. Measurement of static surface displacements, derivatives of displacements, and three-dimensional surface shapes—examples of applications to non-destructive testing. in Digital Speckle Pattern Interferometry and Related Techniques (ed Rastogi, P. K.) (New York: Wiley, 2001).
[228] Groves, R. M., James, S. W. & Tatam, R. P. Full surface strain measurement using shearography. Proceedings of SPIE 4448, Optical Diagnostics for Fluids, Solids, and Combustion. San Diego, CA, United States: SPIE, 2001.
[229] Murukeshan, V. M. et al. Double shearography for engineering metrology: optical and digital approach. Optics & Laser Technology 33, 325-328 (2001).
[230] Martínez-Celorio, R. A. et al. Visibility enhancement of carrier fringes in Electronic Speckle Shearing Pattern Interferometry using microspheres for light detection in back reflection. Optik 112, 99-104 (2001). doi: 10.1078/0030-4026-00032
[231] Tornari, V. et al. Laser-based systems for the structural diagnostic of artwork: an application to XVII-century Byzantine icons. Proceedings of SPIE 4402, Laser Techniques and Systems in Art Conservation. Munich, Germany: SPIE, 2001.
[232] Osten, W. et al. Progress with the implementation of a shearography system for the testing of technical components. Proceedings of SPIE 4900, Seventh International Symposium on Laser Metrology Applied to Science, Industry, and Everyday Life. Novosibirsk, Russian Federation: SPIE, 2002.
[233] Kalms, M. K., Osten, W. & Jueptner, W. P. O. Advanced shearographic system for nondestructive testing of industrial and artwork components. Proceedings of SPIE 4915, Lasers in Material Processing and Manufacturing. Shanghai, China: SPIE, 2002.
[234] Wong, W. O. A simple electronic speckle shearing interferometer. Optics & Laser Technology 34, 399-403 (2002).
[235] Wang, K. F., Tieu, A. K. & Li, E. B. Influence of displacement and its first-and second-order derivative components on curvature fringe formations in speckle shearography. Applied Optics 41, 4557-4561 (2002). doi: 10.1364/AO.41.004557
[236] Steinchen, W., Kupfer, G. & Mäckel, P. Full field tensile strain shearography of welded specimens. Strain 38, 17-26 (2002). doi: 10.1046/j.0039-2103.2002.00005.x
[237] Steinchen, W. & Yang, L. X. Digital Shearography: Theory and Application of Digital Speckle Pattern Shearing Interferometry. (Bellingham: SPIE Press, 2003).
[238] Falldorf, C., Osten, W. & Kolenovic, E. Speckle shearography using a multiband light source. Optics and Lasers in Engineering 40, 543-552 (2003). doi: 10.1016/S0143-8166(02)00080-5
[239] Kalms, M. K. & Osten, W. Mobile shearography system for the inspection of aircraft and automotive components. Optical Engineering 42, 1188-1196 (2003). doi: 10.1117/1.1566968
[240] Hung, Y. Y., Shang, H. M. & Yang, L. X. Unified approach for holography and shearography in surface deformation measurement and nondestructive testing. Optical Engineering 42(5), 1197-1207 (2003). doi: 10.1117/1.1567263
[241] Kim, K. S. et al. Analysis of an internal crack of pressure pipeline using ESPI and shearography. Optics & Laser Technology 35, 639-643 (2003).
[242] Groves, R. M., James, S. W. & Tatam, R. P. Multicomponent shearography using optical fiber imaging-bundles. Proceedings of SPIE 5144, Optical Measurement Systems for Industrial Inspection III. Munich, Germany: SPIE, 2003.
[243] Krupka, R., Waltz, T. & Ettemeyer, A. Industrial applications of shearography for inspections of aircraft components. Proceedings of SPIE 5144, Optical Measurement Systems for Industrial Inspection III. Munich, Germany: SPIE, 2003.
[244] Groves, R. M., James, S. W. & Tatam, R. P. Multi-component pulsed-laser shearography using optical fiber imaging-bundles. Proceedings of SPIE 5191, Optical Diagnostics for Fluids, Solids, and Combustion II. San Diego, California, United States: SPIE, 2003.
[245] Groves, R. M., James, S. W. & Tatam, R. P. Pipe weld investigation using shearography. Strain 39, 101-105 (2003). doi: 10.1046/j.1475-1305.2003.00071.x
[246] Santos, F., Vaz, M. & Monteiro, J. A new set-up for pulsed digital shearography applied to defect detection in composite structures. Optics and Lasers in Engineering 42, 131-140 (2004). doi: 10.1016/j.optlaseng.2003.07.002
[247] Mihaylova, E. et al. Electronic speckle pattern shearing interferometer with a photopolymer holographic grating. Applied Optics 43, 2439-2442 (2004). doi: 10.1364/AO.43.002439
[248] Groves, R. M., James, S. W. & Tatam, R. P. Shape and slope measurement by source displacement in shearography. Optics and Lasers in Engineering 41, 621-634 (2004). doi: 10.1016/S0143-8166(02)00177-X
[249] Kurtz, R. M. et al. Reflection shearography for nondestructive evaluation. Proceedings of SPIE 5422, Unmanned Ground Vehicle Technology VI. Orlando, Florida, United States: SPIE, 2004.
[250] Findeis, D. & Gryzagoridis, J. A comparison of the capabilities of portable shearography and portable electronic speckle pattern interferometry. Proceedings of SPIE 5393, Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Composites III. San Diego, CA, United States: SPIE, 2004.
[251] Casillas, F. J. et al. Small amplitude estimation of mechanical vibrations using electronic speckle shearing pattern interferometry. Optical Engineering 43, 880 (2004). doi: 10.1117/1.1666858
[252] Schuth, M., Vössing, F. & Yang, L. X. A shearographic endoscope for nondestructive test. Journal of Holography and Speckle 1, 46-52 (2004). doi: 10.1166/jhs.2004.007
[253] Sujatha, N. U. & Murukeshan, V. M. Nondestructive inspection of tissue/tissue like phantom curved surfaces using digital speckle shearography. Optical Engineering 43, 3055-3060 (2004). doi: 10.1117/1.1810531
[254] Wang, K. F. & Tieu, A. K. Theory and experiment of spatially and temporally partially coherent speckle shearing interferometry. Optics & Laser Technology 36, 43-45 (2004).
[255] Mihaylova, E., Whelan, M. & Toal, V. Simple phase-shifting lateral shearing interferometer. Optics Letters 29, 1264-1266 (2004). doi: 10.1364/OL.29.001264
[256] Barrientos, B. et al. Measurement of out-of-plane deformation by combination of speckle photography and speckle shearing interferometry. Optik 115, 248-252 (2004). doi: 10.1078/0030-4026-00362
[257] Mäckel, P. Die Scherografie-Ein quantitatives Messverfahren zur Schwingungsmessung und zerstörungsfreien Prüfung. Laser Technik Journal 1, 49-54 (2004). doi: 10.1002/latj.200790016
[258] Yang, L. X. et al. Digital shearography for nondestructive testing: potentials, limitations, and applications. Journal of Holography and Speckle 1, 69-79 (2004). doi: 10.1166/jhs.2004.010
[259] Udupa, G. et al. Defect detection in unpolished Si wafers by digital shearography. Measurement Science and Technology 15, 35-43 (2004). doi: 10.1088/0957-0233/15/1/005
[260] Andhee, A., Gryzagoridis, J. & Findeis, D. Comparison of normal and phase stepping shearographic NDE. Proceedings of SPIE 5767, Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV. San Diego, CA, United States: SPIE, 2005.
[261] Kalms, M. & Jueptner, W. Mobile shearography. Proceedings of SPIE 5852, Third International Conference on Experimental Mechanics and Third Conference of the Asian Committee on Experimental Mechanics. Singapore: SPIE, 2004.
[262] Sun, P. Digital phase-shifting shearography for strain measurement by using a rotating platform system. Optical Engineering 44, 085601 (2005). doi: 10.1117/1.2010127
[263] Tay, C. J. & Fu, Y. Determination of curvature and twist by digital shearography and wavelet transforms. Optics Letters 30, 2873-2875 (2005). doi: 10.1364/OL.30.002873
[264] Abdullah, W. S. W. & Petzing, J. N. Development of speckle shearing interferometer error analysis as an aperture function of wavefront divergence. Journal of Modern Optics 52, 1495-1510 (2005). doi: 10.1080/09500340500052887
[265] Hung, Y. Y. & Ho, H. P. Shearography: an optical measurement technique and applications. Materials Science and Engineering:R:Reports 49, 61-87 (2005). doi: 10.1016/j.mser.2005.04.001
[266] Habib, K. Thermally induced deformations measured by shearography. Optics & Laser Technology 37, 509-512 (2005).
[267] Somers, P. A. A. M. & Bhattacharya, N. Maintaining sub-pixel alignment for a single-camera two-bucket shearing speckle interferometer. Journal of Optics A:Pure and Applied Optics 7, S385-S391 (2005). doi: 10.1088/1464-4258/7/6/020
[268] Groves, R. M. et al. Single-axis combined shearography and digital speckle photography instrument for full surface strain characterization. Optical Engineering 44, 025602 (2005). doi: 10.1117/1.1842779
[269] Cordero, R. R. & Labbe, F. Uncertainty evaluation of displacement gradients measured by electronic speckle pattern shearing interferometry (ESPSI). Measurement Science and Technology 16, 1315-1321 (2005). doi: 10.1088/0957-0233/16/6/012
[270] Bhaduri, B., Mohan, N. K. & Kothiyal, M. P. A dual-function ESPI system for the measurement of out-of-plane displacement and slope. Optics and Lasers in Engineering 44, 637-644 (2006). doi: 10.1016/j.optlaseng.2005.05.004
[271] Bhaduri, B. et al. Use of spatial phase shifting technique in digital speckle pattern interferometry (DSPI) and digital shearography (DS). Optics Express 14, 11598-11607 (2006). doi: 10.1364/OE.14.011598
[272] Groves, R. M. & Osten, W. Temporal phase measurement methods in shearography. Proceedings of SPIE 6341, Speckle06: Speckles, From Grains to Flowers. Nimes, France: SPIE, 2006
[273] Zhao, S. A. & Chung, P. S. Digital speckle shearing interferometer using a liquid-crystal spatial light modulator. Optical Engineering 45, 105606 (2006). doi: 10.1117/1.2360940
[274] Mihaylova, E. et al. Photopolymer diffractive optical elements in electronic speckle pattern shearing interferometry. Optics and Lasers in Engineering 44, 965-974 (2006). doi: 10.1016/j.optlaseng.2005.06.017
[275] Bhaduri, B., Mohan, N. K. & Kothiyal, M. P. Cyclic-path digital speckle shear pattern interferometer: use of polarization phase-shifting method. Optical Engineering 45, 105604 (2006). doi: 10.1117/1.2361194
[276] Quan, C., Fu, Y. & Miao, H. Wavelet analysis of digital shearing speckle patterns with a temporal carrier. Optics Communications 260, 97-104 (2006). doi: 10.1016/j.optcom.2005.10.023
[277] Viotti, M. R. et al. A portable digital speckle pattern interferometry device to measure residual stresses using the hole drilling technique. Optics and Lasers in Engineering 44, 1052-1066 (2006). doi: 10.1016/j.optlaseng.2005.09.004
[278] Růžek, R., Lohonka, R. & Jironč, J. Ultrasonic C-Scan and shearography NDI techniques evaluation of impact defects identification. NDT & E International 39, 132-142 (2006).
[279] Groves, R. M. et al. Full-field Laser Shearography Instrumentation for the Detection and Characterization of Fatigue Cracks in Titanium 10-2-3. Journal of ASTM International 3, 12757 (2006). doi: 10.1520/JAI12757
[280] Ochoa, N. A. & Silva-Moreno, A. A. Fringes demodulation in time-averaged digital shearography using genetic algorithms. Optics Communications 260, 434-437 (2006). doi: 10.1016/j.optcom.2005.11.045
[281] Yang, L. X. Recent developments of digital shearography for NDT. Material Evaluation 64, 704-709 (2006).
[282] Pauliat, G. & Roosen, G. Continuous monitoring of a surface slope by real-time shearing interferometry with a photorefractive crystal. Applied Optics 45, 993-999 (2006). doi: 10.1364/AO.45.000993
[283] Bhaduri, B., Mohan, N. K. & Kothiyal, M. P. (1, N) spatial phase-shifting technique in digital speckle pattern interferometry and digital shearography for nondestructive evaluation. Optical Engineering 46, 051009 (2007). doi: 10.1117/1.2740749
[284] Somers, P. A. A. M. & Bhattacharya, N. Handling unfavourable polarization states in a polarization-based shearing speckle interferometer. Journal of Optics A:Pure and Applied Optics 9, S92-S97 (2007). doi: 10.1088/1464-4258/9/6/S14
[285] Francis, D., James, S. W. & Tatam, R. P. Surface strain measurement using multi-component shearography with coherent fibre-optic imaging bundles. Measurement Science and Technology 18, 3583-3591 (2007). doi: 10.1088/0957-0233/18/11/043
[286] Anand, A. et al. Fresnel wavefront propagation model for shearography shape measurement. Proceedings of SPIE 6617, Modeling Aspects in Optical Metrology. Munich, Germany: SPIE, 2007.
[287] Falldorf, C. et al. Efficient reconstruction of spatially limited phase distributions from their sheared representation. Applied Optics 46, 5038-5043 (2007). doi: 10.1364/AO.46.005038
[288] Hung, Y. Y. et al. Review and comparison of shearography and pulsed thermography for adhesive bond evaluation. Optical Engineering 46, 051007 (2007). doi: 10.1117/1.2741277
[289] Groves, R. M. et al. Surface strain measurement: a comparison of speckle shearing interferometry and optical fibre Bragg gratings with resistance foil strain gauges. Measurement Science and Technology 18, 1175-1184 (2007). doi: 10.1088/0957-0233/18/5/003
[290] Groves, R. M. et al. Shearography as part of a multi-functional sensor for the detection of signature features in movable cultural heritage. Proceedings of SPIE 6618, O3A: Optics for Arts, Architecture, and Archaeology. Munich, Germany: SPIE, 2007.
[291] Bhaduri, B., Kothiyal, M. P. & Mohan, N. K. Curvature measurement using three-aperture digital shearography and fast Fourier transform. Optics and Lasers in Engineering 45, 1001-1004 (2007). doi: 10.1016/j.optlaseng.2007.04.005
[292] Huang, S. J. & Liu Y. F. The out-of-plane strain measurement of composite sandwich plate with fully-potted insert using digital phase-shifting shearography. ICCES 4, 187-193 (2007). doi: 10.3970/icces.2007.004.187
[293] Kalms, M. Mobile shearography in applications. Proceedings of SPIE 6762, Two- and Three-Dimensional Methods for Inspection and Metrology V. Boston, MA, United States: SPIE, 2007.
[294] Bhaduri, B., Mohan, N. K. & Kothiyal, M. P. Simultaneous measurement of out-of-plane displacement and slope using a multiaperture DSPI system and fast Fourier transform. Applied Optics 46, 5680-5686 (2007). doi: 10.1364/AO.46.005680
[295] Rosso, V. et al. Almost-common path interferometer using the separation of polarization states for digital phase-shifting shearography. Optical Engineering 46, 105601 (2007). doi: 10.1117/1.2795632
[296] Groves, R. M., Pedrini, G. & Osten, W. Real-time extended dynamic range imaging in shearography. Applied Optics 47, 5550-5556 (2008). doi: 10.1364/AO.47.005550
[297] Gryzagoridis, J. & Findeis, D. Benchmarking shearographic NDT for composites. Insight 50, 249-252 (2008). doi: 10.1784/insi.2008.50.5.249
[298] Findeis, D., Gryzagoridis, J. & Musonda, V. NDT detection and quantification of induced defects on composite helicopter rotor blade and UAV wing sections. Proceedings of SPIE 7155, Ninth International Symposium on Laser Metrology. Singapore, Singapore: SPIE, 2008.
[299] Rosso, V. et al. Simultaneous coherent imaging and strain measurement using coupled photorefractive holography and shearography. Optics Letters 33, 797-799 (2008). doi: 10.1364/OL.33.000797
[300] Francis, D. Surface strain measurement using pulsed laser shearography with fibre-optic imaging bundles. PhD thesis, Cranfield University, UK, 2008.
[301] Focke, O., Hildebrand, A. & von Kopylow, C. Inspection of laser generated lamb waves using shearographic interferometry. Proceedings of the 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications. Montreal, Canada, 2008.
[302] Francis, D., James, S. W. & Tatam, R. P. Surface strain measurement of rotating objects using pulsed laser shearography with coherent fibre-optic imaging bundles. Measurement Science and Technology 19, 105301 (2008). doi: 10.1088/0957-0233/19/10/105301
[303] Lee, J. R. et al. Investigation of shear distance in Michelson interferometer-based shearography for mechanical characterization. Measurement Science and Technology 19, 115303 (2008). doi: 10.1088/0957-0233/19/11/115303
[304] Huang, S. J. & Lin, Y. T. Out-of-plane strain measurement in sandwich plates with single fully potted insert by using digital shearography. Strain 44, 253-258 (2008). doi: 10.1111/j.1475-1305.2007.00361.x
[305] Sun, C. R., Chen, J. L. & Lu, H. Improved phase-shifted digital speckle shearography for time-dependent deformation measurement. Optical Engineering 47, 065601 (2008). doi: 10.1117/1.2939407
[306] Groves, R. M. et al. Multi-sensor evaluation of a wooden panel painting using terahertz imaging and shearography. Proceedings of SPIE 7391, O3A: Optics for Arts, Architecture, and Archaeology II. Munich, Germany: SPIE, 2009.
[307] Mihaylova, E. & Toal, V. Simple versatile shearing interferometer suitable for measurements on a microscopic scale. Optics and Lasers in Engineering 47, 271-273 (2009). doi: 10.1016/j.optlaseng.2008.05.003
[308] Hung, Y. Y. et al. Review and comparison of shearography and active thermography for nondestructive evaluation. Materials Science and Engineering:R:Reports 64, 73-112 (2009). doi: 10.1016/j.mser.2008.11.001
[309] Kumar, U. P., Kothiyal, M. P. & Mohan, N. K. Microscopic TV shearography for characterization of microsystems. Optics Letters 34, 1612-1614 (2009). doi: 10.1364/OL.34.001612
[310] Huang, Y. H. et al. NDT&E using shearography with impulsive thermal stressing and clustering phase extraction. Optics and Lasers in Engineering 47, 774-781 (2009). doi: 10.1016/j.optlaseng.2009.02.011
[311] Groves, R. M. et al. 2D and 3D non-destructive evaluation of a wooden panel painting using shearography and terahertz imaging. NDT & E International 42, 543-549 (2009).
[312] Groves, R. M. et al. 2.5D virtual reality visualisation of shearography strain data from a canvas painting. Proceedings of SPIE 7391, O3A: Optics for Arts, Architecture, and Archaeology II. Munich, Germany: SPIE, 2009.
[313] Bhaduri, B., Tay, C. J. & Quan, C. G. Direct measurement of curvature and twist using two-channel double-aperture digital shearography. Optical Engineering 49, 033604 (2010). doi: 10.1117/1.3359470
[314] Francis, D., Tatam, R. P. & Groves, R. M. Shearography technology and applications: a review. Measurement Science and Technology 21, 102001 (2010). doi: 10.1088/0957-0233/21/10/102001
[315] Goto, D. T. & Groves, R. M. Error analysis of 3D shearography using finite-element modelling. Proceedings of SPIE 7718, Optical Micro- and Nanometrology III. Brussels, Belgium: SPIE, 2010.
[316] Habib, K. Failure of thin films: optical shearography versus electrochemical impedance spectroscopy. Optik 121, 1317-1323 (2010). doi: 10.1016/j.ijleo.2009.01.018
[317] Wu, S. J., He, X. Y. & Yang, L. X. Enlarging the angle of view in Michelson-interferometer-based shearography by embedding a 4f system. Applied Optics 50, 3789-3794 (2011). doi: 10.1364/AO.50.003789
[318] Dhanotia, J. et al. Slope measurement of bent plates using double grating shearing interferometry. Applied Optics 50, 2958-2963 (2011). doi: 10.1364/AO.50.002958
[319] Taillade, F. et al. Shearography and pulsed stimulated infrared thermography applied to a nondestructive evaluation of FRP strengthening systems bonded on concrete structures. Construction and Building Materials 25, 568-574 (2011). doi: 10.1016/j.conbuildmat.2010.02.019
[320] Wu, S. J. et al. Digital shearography with in situ phase shift calibration. Optics and Lasers in Engineering 50, 1260-1266 (2012). doi: 10.1016/j.optlaseng.2012.03.011
[321] Frade, M., Enguita, J. M. & Álvarez, I. In situ 3D profilometry of rough objects with a lateral shearing interferometry range finder. Optics and Lasers in Engineering 50, 1559-1567 (2012). doi: 10.1016/j.optlaseng.2012.04.012
[322] Fu, Y., Guo, M. & Liu, H. Determination of instantaneous curvature and twist by digital shearography. Optical Engineering 51, 083602 (2012). doi: 10.1117/1.OE.51.8.083602
[323] Cai, C. Q. & He, L. F. Improved Mach-Zehnder interferometer-based shearography. Optics and Lasers in Engineering 50, 1699-1705 (2012). doi: 10.1016/j.optlaseng.2012.07.014
[324] Zhu, L. Q. et al. Real-time monitoring of phase maps of digital shearography. Optical Engineering 52, 101902 (2013). doi: 10.1117/1.OE.52.10.101902
[325] Xie, X. et al. Michelson interferometer based spatial phase shift shearography. Applied Optics 52, 4063-4071 (2013). doi: 10.1364/AO.52.004063
[326] Xie, X. et al. Simultaneous measurement of deformation and the first derivative with spatial phase-shift digital shearography. Optics Communications 286, 277-281 (2013). doi: 10.1016/j.optcom.2012.08.072
[327] Zastavnik, F. et al. Comparison of shearography to scanning laser vibrometry as methods for local stiffness identification of beams. Strain 50, 82-94 (2014). doi: 10.1111/str.12069
[328] Zhang, Y., Li, T. & Li, Q. L. Defect detection for tire laser shearography image using curvelet transform based edge detector. Optics & Laser Technology 47, 64-71 (2013).
[329] Blain, P. et al. An in-line shearography setup based on circular polarization gratings. Optics and Lasers in Engineering 51, 1053-1059 (2013). doi: 10.1016/j.optlaseng.2013.03.003
[330] Lopes, H. et al. Localization of damage with speckle shearography and higher order spatial derivatives. Mechanical Systems and Signal Processing 49, 24-38 (2014). doi: 10.1016/j.ymssp.2013.12.016
[331] Sirohi, R. S. Digital shear speckle pattern interferometry with holo-elements. Asian Journal of Physics 23, 509-515 (2014).
[332] Zastavnik, F. et al. Errors in shearography measurements due to the creep of the PZT shearing actuator. Measurement Science and Technology 25, 085007 (2014). doi: 10.1088/0957-0233/25/8/085007
[333] Xu, N. et al. Shearography for specular object inspection. Optics and Lasers in Engineering 61, 14-18 (2014). doi: 10.1016/j.optlaseng.2014.04.015
[334] Xu, X. et al. Identification of flaws using digital shearography. Lasers in Engineering 28, 201-211 (2014).
[335] Huke, P., Burke, J. & Bergmann, R. B. A comparative study between deflectometry and shearography for detection of subsurface defects. Proceedings of SPIE 9203, Interferometry XVII: Techniques and Analysis. San Diego, California, United States: SPIE, 2014.
[336] Vandenrijt, J. F., Lièvre, N. & Georges, M. P. Improvement of defect detection in shearography by using principal component analysis. Proceedings of SPIE 9203, Interferometry XVII: Techniques and Analysis. San Diego, California, United States: SPIE, 2014.
[337] Zhu, L. Q., Wu, S. J. & Yang, L. X. Stroboscopic digital shearographic system for vibration analysis of large-area object. Instruments and Experimental Techniques 57, 493-498 (2014). doi: 10.1134/S0020441214040113
[338] Khaleghi, M. et al. Long-term effects of cyclic environmental conditions on paintings in museum exhibition by laser shearography. in Advancement of Optical Methods in Experimental Mechanics, Volume 3 (eds Jin, H. et al.) (Cham: Springer, 2014), 283-288.
[339] Krzemień, L. et al. Combining digital speckle pattern interferometry with shearography in a new instrument to characterize surface delamination in museum artefacts. Journal of Cultural Heritage 16, 544-550 (2015). doi: 10.1016/j.culher.2014.10.006
[340] Amar, S. et al. Digital carrier superposition by Hilbert-Huang transform for optical phase recovery in speckle shearing interferometry. Optical Engineering 54, 013101 (2015). doi: 10.1117/1.OE.54.1.013101
[341] Feng, Z. et al. A polarized digital shearing speckle pattern interferometry system based on temporal wavelet transformation. Review of Scientific Instruments 86, 093102 (2015). doi: 10.1063/1.4929533
[342] Falldorf, C., Klattenhoff, R. & Bergmann, R. B. Single shot lateral shear interferometer with variable shear. Optical Engineering 54, 054105 (2015). doi: 10.1117/1.OE.54.5.054105
[343] Bai, P. X., Zhu, F. P. & He, X. Y. Out-of-plane displacement field measurement by shearography. Optics & Laser Technology 73, 29-38 (2015).
[344] Zastavnik, F. et al. Calibration and correction procedure for quantitative out-of-plane shearography. Measurement Science and Technology 26, 045201 (2015). doi: 10.1088/0957-0233/26/4/045201
[345] Xie, X. et al. Measurement of in-plane strain with dual beam spatial phase-shift digital shearography. Measurement Science and Technology 26, 115202 (2015). doi: 10.1088/0957-0233/26/11/115202
[346] Buchta, D. et al. Artwork inspection by shearography with adapted loading. Experimental Mechanics 55, 1691-1704 (2015). doi: 10.1007/s11340-015-0070-9
[347] Schindler, J. et al. Retrieving the axial position of fluorescent light emitting spots by shearing interferometry. Journal of Biomedical Optics 21, 125009 (2016). doi: 10.1117/1.JBO.21.12.125009
[348] Languy, F. et al. Vibration mode shapes visualization in industrial environment by real-time time-averaged phase-stepped electronic speckle pattern interferometry at 10.6 μm and shearography at 532 nm. Optical Engineering 55, 121704 (2016). doi: 10.1117/1.OE.55.12.121704
[349] Deepan, B., Quan, C. G. & Tay, C. J. Determination of slope, curvature, and twist from a single shearography fringe pattern using derivative-based regularized phase tracker. Optical Engineering 55, 121707 (2016). doi: 10.1117/1.OE.55.12.121707
[350] Richoz, G. L. & Schajer, G. S. Simultaneous two-axis shearographic interferometer using multiple wavelengths and a color camera. Optics and Lasers in Engineering 77, 143-153 (2016). doi: 10.1016/j.optlaseng.2015.08.007
[351] Wang, Y. H. et al. Simultaneous dual directional strain measurement using spatial phase-shift digital shearography. Optics and Lasers in Engineering 87, 197-203 (2016). doi: 10.1016/j.optlaseng.2015.12.009
[352] Mininni, M. et al. Damage identification in beams using speckle shearography and an optimal spatial sampling. Mechanical Systems and Signal Processing 79, 47-64 (2016). doi: 10.1016/j.ymssp.2016.02.039
[353] Yang, L. X. & Xie, X. Digital Shearography: New Developments and Applications. (Bellingham: SPIE Press, 2016).
[354] Xie, X. et al. Polarized digital shearography for simultaneous dual shearing directions measurements. Review of Scientific Instruments 87, 083110 (2016). doi: 10.1063/1.4961473
[355] dos Santos, J. V. A., Lopes H. & Moreno-García, P. Numerical study on damage identification using shearography with different shearing amounts. Procedia Structural Integrity 5, 1198-1204 (2017). doi: 10.1016/j.prostr.2017.07.039
[356] Lopes, H. et al. Influence of shearing amount and vibration amplitude on noise in shearography. Procedia Structural Integrity 5, 1205-1212 (2017). doi: 10.1016/j.prostr.2017.07.043
[357] Falldorf, C. et al. Sparse light fields in coherent optical metrology [Invited]. Applied Optics 56, F14-F19 (2017). doi: 10.1364/AO.56.000F14
[358] Wang, X. et al. Temporal heterodyne shearing speckle pattern interferometry. Optics and Lasers in Engineering 93, 76-82 (2017). doi: 10.1016/j.optlaseng.2017.01.010
[359] Sun, J. F. et al. Dynamic measurement of first-order spatial derivatives of deformations by digital shearography. Instruments and Experimental Techniques 60, 575-583 (2017). doi: 10.1134/S0020441217040145
[360] Zhao, Q. H. et al. Digital shearography for NDT: phase measurement technique and recent developments. Applied Sciences 8, 2662 (2018). doi: 10.3390/app8122662
[361] da Silva, F. A. A. et al. Evaluation of a novel compact shearography system with DOE configuration. Optics and Lasers in Engineering 104, 90-99 (2018).
[362] Macedo, F. J. et al. Inspection of defects of composite materials in inner cylindrical surfaces using endoscopic shearography. Optics and Lasers in Engineering 104, 100-108 (2018). doi: 10.1016/j.optlaseng.2017.06.005
[363] Newman, J. W. Shearography nondestructive testing of composites. Comprehensive Composite Materials II 7, 270-290 (2018).
[364] Buchta, D. et al. Soft tissue elastography via shearing interferometry. Journal of Medical Imaging 5, 046001 (2018).
[365] Barrera, E. S. et al. Multiple-aperture one-shot shearography for simultaneous measurements in three shearing directions. Optics and Lasers in Engineering 111, 86-92 (2018). doi: 10.1016/j.optlaseng.2018.07.018
[366] Kirkove, M. et al. Determination of vibration amplitudes from binary phase patterns obtained by phase-shifting time-averaged speckle shearing interferometry. Applied Optics 57, 8065-8077 (2018). doi: 10.1364/AO.57.008065
[367] Buchta, D. et al. Combination of FEM simulations and shearography for defect detection on artwork. Strain 54, e12269 (2018). doi: 10.1111/str.12269
[368] Liu, H. J. et al. Directed acoustic shearography for crack detection around fastener holes in aluminum plates. NDT & E International 100, 124-131 (2018).
[369] Wang, X. et al. Application of digital shearing speckle pattern interferometry for thermal stress. Measurement 125, 11-18 (2018). doi: 10.1016/j.measurement.2018.04.073
[370] Wang, S. J. et al. Dual-directional shearography based on a modified common-path configuration using spatial phase shift. Applied Optics 58, 593-603 (2019). doi: 10.1364/AO.58.000593
[371] Yan, P. Z. et al. Shearography for non-destructive testing of specular reflecting objects using scattered light illumination. Optics & Laser Technology 112, 452-457 (2019).
[372] Yan, P. Z. et al. Spatial phase-shift digital shearography for simultaneous measurements in three shearing directions based on adjustable aperture multiplexing. Optical Engineering 58, 054105 (2019).
[373] DeWeert, M. J. et al. Principles of surface-phase-resolved shearography. Optical Engineering 58, 114103 (2019).
[374] Katunin, A., Lopes, H. & dos Santos, J. V. A. Identification of multiple damage using modal rotation obtained with shearography and undecimated wavelet transform. Mechanical Systems and Signal Processing 116, 725-740 (2019). doi: 10.1016/j.ymssp.2018.07.024
[375] Sun, F. Y. et al. The application of SLM in shearography detecting system. Optics and Lasers in Engineering 114, 90-94 (2019). doi: 10.1016/j.optlaseng.2018.10.016
[376] Arco, C. et al. Application of spline interpolation to speckle shearography measurements for damage identification. Procedia Structural Integrity 17, 718-725 (2019). doi: 10.1016/j.prostr.2019.08.096
[377] Hooshmand-Ziafi, H., Hassani, K. & Dashtdara, M. Dual-sensitive spatial phase-shifting shearography based on a common-path configuration. Optical Engineering 58, 114104 (2019).
[378] Zhao, Q. H. et al. Simultaneous 3D measurement of deformation and its first derivative with speckle pattern interferometry and shearography. Applied Optics 58, 8665-8672 (2019). doi: 10.1364/AO.58.008665
[379] Dong, J. et al. Real-time dual-sensitive shearography for simultaneous in-plane and out-of-plane strain measurements. Optics Express 27, 3276-3283 (2019). doi: 10.1364/OE.27.003276
[380] Gao, X. Y. et al. Double imaging Mach-Zehnder spatial carrier digital shearography. Journal of Modern Optics 66, 153-160 (2019). doi: 10.1080/09500340.2018.1513173
[381] Yan, P. Z. et al. Pixelated carrier phase-shifting shearography using spatiotemporal low-pass filtering algorithm. Sensors 19, 5185 (2019). doi: 10.3390/s19235185
[382] Hooshmand-Ziafi, H. et al. Common-path spatial phase-shift speckle shearography using a glass plate. Review of Scientific Instruments 90, 105105 (2019). doi: 10.1063/1.5097211
[383] Giordano, A. & Chiang, F. P. Digital laser speckle technique for generating deflection, slope, and curvature contours of bent plates. Optical Engineering 59, 094101 (2020).
[384] Dong, J. et al. Shear-unlimited common-path speckle interferometer. Optics Letters 45, 1305-1308 (2020). doi: 10.1364/OL.382893
[385] Sun, F. Y. et al. A spatial-phase-shift-based defect detection shearography system with independent adjustment of shear amount and spatial carrier frequency. Optics & Laser Technology 124, 105956 (2020).
[386] Zhong, S. M. et al. Multi-directional shearography based on multiplexed Mach-Zehnder interference system. Journal of Modern Optics 67, 346-354 (2020). doi: 10.1080/09500340.2020.1733115
[387] Oliveira, B. C. F. et al. Square-pulse shearography inspections of metallic parts repaired with a glass fiber reinforced polymer using pressure, radiation, vibration, and induction loading methods. International Journal of Pressure Vessels and Piping 187, 104187 (2020). doi: 10.1016/j.ijpvp.2020.104187
[388] Felipe, D. S. et al. Procedure for detecting the shape and size of defects on metallic substrates under composite repairs using shearography. Applied Optics 59, 8089-8097 (2020). doi: 10.1364/AO.399417
[389] Zhang, B. Y. et al. Overview of digital shearography for NDT. Materials Evaluation 78, 342-351 (2020). doi: 10.32548/2020.me-04120
[390] Zhang, B. Y. et al. Spatial-light-modulator-based dual shearing direction shearography. Applied Optics 59, 11080-11086 (2020). doi: 10.1364/AO.404088
[391] Zhao, Q. H. et al. A new multiplexed system for the simultaneous measurement of out-of-plane deformation and its first derivative. Optics Communications 482, 126602 (2021). doi: 10.1016/j.optcom.2020.126602
[392] Gu, G. Q. et al. Improved depth characterization of internal defect using the fusion of shearography and speckle interferometry. Optics & Laser Technology 135, 106701 (2021).
[393] Anisimov, A. G. & Groves, R. M. Extreme shearography: development of a high-speed shearography instrument for quantitative surface strain measurements during an impact event. Optics and Lasers in Engineering 140, 106502 (2021). doi: 10.1016/j.optlaseng.2020.106502