[1] |
Bai, Y. T. et al. Perfect absorption and phase singularities induced by surface lattice resonances for plasmonic nanoparticle array on a metallic film. Optics Express 30, 45400-45412 (2022). doi: 10.1364/OE.475248 |
[2] |
Cerdán, L. et al. Perfect absorption with independent electric and magnetic lattice resonances in metallo-dielectric arrays. Advanced Optical Materials 12, 2302737 (2024). doi: 10.1002/adom.202302737 |
[3] |
Rossner, C., König, T. A. F. & Fery, A. Plasmonic properties of colloidal assemblies. Advanced Optical Materials 9, 2001869 (2021). doi: 10.1002/adom.202001869 |
[4] |
McLean, A. et al. Au nanobead chains with tunable plasmon resonance and intense optical scattering: scalable green synthesis, Monte Carlo assembly kinetics, discrete dipole approximation modeling, and nano-biophotonic application. Chemistry of Materials 33, 2913-2928 (2021). doi: 10.1021/acs.chemmater.1c00336 |
[5] |
Gómez-Tornero, A. et al. Field enhancement and spectral features of hexagonal necklaces of silver nanoparticles for enhanced nonlinear optical processes. Optics Express 26, 22394-22404 (2018). doi: 10.1364/OE.26.022394 |
[6] |
Miyauchi, Y. et al. Modulation of surface plasmon due to the inhomogeneity of a one-dimensional linear array of gold nanoparticles observed by optical second-harmonic generation microscopy. e-Journal of Surface Science and Nanotechnology 22, 162-169 (2024). doi: 10.1380/ejssnt.2024-001 |
[7] |
Willingham, B. & Link, S. Energy transport in metal nanoparticle chains via sub-radiant plasmon modes. Optics Express 19, 6450-6461 (2011). doi: 10.1364/OE.19.006450 |
[8] |
Solis, D. Jr. et al. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes. Nano Letters 12, 1349-1353 (2012). |
[9] |
Solis, D. Jr. et al. Turning the corner: efficient energy transfer in bent plasmonic nanoparticle chain waveguides. Nano Letters 13, 4779-4784 (2013). |
[10] |
Song, G. & Zhang, W. Power-law/exponential transport of electromagnetic field in one-dimensional metallic nanoparticle arrays. Plasmonics 13, 2369-2376 (2018). doi: 10.1007/s11468-018-0763-x |
[11] |
Yan, M. Complex-k modes of plasmonic chain waveguides. Journal of Physics Communications 3, 115015 (2019). doi: 10.1088/2399-6528/ab4aa5 |
[12] |
Han, X. G., Liu, Y. D. & Yin, Y. D. Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Letters 14, 2466-2470 (2014). doi: 10.1021/nl500144k |
[13] |
Punj, D. et al. Self-assembled nanoparticle dimer antennas for plasmonic-enhanced single-molecule fluorescence detection at micromolar concentrations. ACS Photonics 2, 1099-1107 (2015). doi: 10.1021/acsphotonics.5b00152 |
[14] |
Zhou, N. et al. Au nanorod–coupled microfiber optical humidity sensors. Optics Express 27, 8180-8185 (2019). doi: 10.1364/OE.27.008180 |
[15] |
Sarkar, S. & König, T. A. F. Engineering plasmonic hybridization toward advanced optical sensors. Advanced Sensor Research 3, 2300054 (2024). doi: 10.1002/adsr.202300054 |
[16] |
Roelli, P. et al. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Nature Nanotechnology 11, 164-169 (2016). doi: 10.1038/nnano.2015.264 |
[17] |
Xu, K. C. et al. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Advanced Science 6, 1900925 (2019). doi: 10.1002/advs.201900925 |
[18] |
Yan, S. S. et al. Manipulating coupled field enhancement in slot-under-groove nanoarrays for universal surface-enhanced Raman scattering. ACS Nano 17, 22766-22777 (2023). doi: 10.1021/acsnano.3c07458 |
[19] |
Nguyen, V. P. et al. Chain-like gold nanoparticle clusters for multimodal photoacoustic microscopy and optical coherence tomography enhanced molecular imaging. Nature Communications 12, 34 (2021). doi: 10.1038/s41467-020-20276-z |
[20] |
Okamoto, K. et al. Design and optimization of silver nanostructured arrays in plasmonic metamaterials for sensitive imaging applications. Photonics 11, 292 (2024). doi: 10.3390/photonics11040292 |
[21] |
Rekola, H. T., Hakala, T. K. & Törmä, P. One-dimensional plasmonic nanoparticle chain lasers. ACS Photonics 5, 1822-1826 (2018). doi: 10.1021/acsphotonics.8b00001 |
[22] |
Wang, W. J. et al. The rich photonic world of plasmonic nanoparticle arrays. Materials Today 21, 303-314 (2018). doi: 10.1016/j.mattod.2017.09.002 |
[23] |
Yang, K. et al. Metallic plasmonic array structures: principles, fabrications, properties, and applications. Advanced Materials 33, 2007988 (2021). doi: 10.1002/adma.202007988 |
[24] |
Gao, P. Q. et al. Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing. Nano Letters 15, 4591-4598 (2015). doi: 10.1021/acs.nanolett.5b01202 |
[25] |
Osipov, A. A. et al. Development of controlled nanosphere lithography technology. Scientific Reports 13, 3350 (2023). doi: 10.1038/s41598-023-29077-y |
[26] |
Golze, S. D. et al. Plasmon-mediated synthesis of periodic arrays of gold nanoplates using substrate-immobilized seeds lined with planar defects. Nano Letters 19, 5653-5660 (2019). doi: 10.1021/acs.nanolett.9b02215 |
[27] |
Cox, L. M. et al. Nanoimprint lithography: emergent materials and methods of actuation. Nano Today 31, 100838 (2020). doi: 10.1016/j.nantod.2019.100838 |
[28] |
Gupta, V. et al. Nanoimprint lithography facilitated plasmonic-photonic coupling for enhanced photoconductivity and photocatalysis. Advanced Functional Materials 31, 2105054 (2021). doi: 10.1002/adfm.202105054 |
[29] |
Henzie, J., Lee, M. H. & Odom, T. W. Multiscale patterning of plasmonic metamaterials. Nature Nanotechnology 2, 549-554 (2007). doi: 10.1038/nnano.2007.252 |
[30] |
Wang, D. Q. et al. Superlattice plasmons in hierarchical Au nanoparticle arrays. ACS Photonics 2, 1789-1794 (2015). doi: 10.1021/acsphotonics.5b00546 |
[31] |
Hicks, E. M. et al. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Letters 5, 1065-1070 (2005). doi: 10.1021/nl0505492 |
[32] |
Auguié, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Physical Review Letters 101, 143902 (2008). doi: 10.1103/PhysRevLett.101.143902 |
[33] |
Liu, N. W. et al. Focused‐ion‐beam‐based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements. Advanced Materials 20, 2547-2551 (2008). doi: 10.1002/adma.200702604 |
[34] |
Stoian, R. & Colombier, J. P. Advances in ultrafast laser structuring of materials at the nanoscale. Nanophotonics 9, 4665-4688 (2020). doi: 10.1515/nanoph-2020-0310 |
[35] |
Balena, A. et al. Recent advances on high-speed and holographic two-photon direct laser writing. Advanced Functional Materials 33, 2211773 (2023). doi: 10.1002/adfm.202211773 |
[36] |
Nakhoul, A. & Colombier, J. P. Beyond the microscale: advances in surface nanopatterning by laser-driven self-organization. Laser & Photonics Reviews 18, 2300991 (2024). |
[37] |
Liu, B. W. et al. Nanobowtie arrays with tunable materials and geometries fabricated by holographic lithography. Nanoscale 12, 21401-21408 (2020). doi: 10.1039/D0NR05546H |
[38] |
Kagias, M. et al. Metasurface-enabled holographic lithography for impact-absorbing nanoarchitected sheets. Advanced Materials 35, 2209153 (2023). doi: 10.1002/adma.202209153 |
[39] |
Vilkevičius, K. et al. Formation of highly tunable periodic plasmonic structures on gold films using direct laser writing. Advanced Optical Materials 12, 2400172 (2024). doi: 10.1002/adom.202400172 |
[40] |
Kolesov, R. et al. Wave–particle duality of single surface plasmon polaritons. Nature Physics 5, 470-474 (2009). doi: 10.1038/nphys1278 |
[41] |
Wang, Y. P., Wu, X. Q. & Wang, P. Asymmetric cavity mode engineering in a single plasmonic nanowire. Journal of Lightwave Technology 39, 5855-5863 (2021). doi: 10.1109/JLT.2021.3091818 |
[42] |
Wu, X. Q. & Wang, Y. P. A physics-based machine learning approach for modeling the complex reflection coefficients of metal nanowires. Nanotechnology 33, 205701 (2022). doi: 10.1088/1361-6528/ac512e |
[43] |
Wang, Y. P. et al. Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates. Optics Express 20, 19006-19015 (2012). doi: 10.1364/OE.20.019006 |
[44] |
Milosevic, M. On the nature of the evanescent wave. Applied Spectroscopy 67, 126-131 (2013). doi: 10.1366/12-06707 |
[45] |
Chen, X. et al. Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6, 2550-2557 (2012). doi: 10.1021/nn2050032 |
[46] |
Li, Q. et al. Photothermal enhancement in core-shell structured plasmonic nanoparticles. Plasmonics 9, 623-630 (2014). doi: 10.1007/s11468-014-9673-8 |
[47] |
Dai, S. W. et al. Laser-induced single point nanowelding of silver nanowires. Applied Physics Letters 108, 121103 (2016). doi: 10.1063/1.4944699 |
[48] |
Christensen, B. H., Vestentoft, K. & Balling, P. Short-pulse ablation rates and the two-temperature model. Applied Surface Science 253, 6347-6352 (2007). doi: 10.1016/j.apsusc.2007.01.045 |
[49] |
Lu, H. M. et al. Size-, shape-, and dimensionality-dependent melting temperatures of nanocrystals. The Journal of Physical Chemistry C 113, 7598-7602 (2009). doi: 10.1021/jp900314q |
[50] |
Cheng, Z. et al. Temperature dependence of electrical and thermal conduction in single silver nanowire. Scientific Reports 5, 10718 (2015). doi: 10.1038/srep10718 |
[51] |
Remadevi, A. et al. Electrical, thermal and microwave shielding properties of printable silver nanowires. Journal of Materials Science 56, 15971-15984 (2021). doi: 10.1007/s10853-021-06327-w |
[52] |
Rawat, K. & Goyal, M. Thermal conductivity dependence on shape and size in nanomaterials. Materials Today: Proceedings 81, 1132-1137 (2023). doi: 10.1016/j.matpr.2021.04.409 |
[53] |
Kim, C. L. et al. Mechanism of heat-induced fusion of silver nanowires. Scientific Reports 10, 9271 (2020). doi: 10.1038/s41598-020-66304-2 |
[54] |
Damerchi, E. et al. Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate. Beilstein Journal of Nanotechnology 15, 435-446 (2024). doi: 10.3762/bjnano.15.39 |
[55] |
Sugioka, K. Handbook of Laser Micro- and Nano-Engineering. (Cham: Springer, 2021). |
[56] |
Öktem, B. et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nature Photonics 7, 897-901 (2013). doi: 10.1038/nphoton.2013.272 |
[57] |
Huang, H. X. et al. Near-field-regulated ultrafast laser supra-wavelength structuring directly on ultrahard metallic glasses. Advanced Materials 36, 2405766 (2024). doi: 10.1002/adma.202405766 |
[58] |
Li, Z. Z. et al. Super-stealth dicing of transparent solids with nanometric precision. Nature Photonics 18, 799-808 (2024). doi: 10.1038/s41566-024-01437-8 |
[59] |
Toimil Molares, M. E. et al. Fragmentation of nanowires driven by Rayleigh instability. Applied Physics Letters 85, 5337-5339 (2004). doi: 10.1063/1.1826237 |
[60] |
Juodkazis, S. et al. Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibres against thermo-capillary growth of micro-spheres. Nanotechnology 17, 4802-4805 (2006). doi: 10.1088/0957-4484/17/19/003 |
[61] |
Karim, S. et al. Morphological evolution of Au nanowires controlled by Rayleigh instability. Nanotechnology 17, 5954-5959 (2006). doi: 10.1088/0957-4484/17/24/009 |
[62] |
Shin, H. S., Yu, J. & Song, J. Y. Size-dependent thermal instability and melting behavior of Sn nanowires. Applied Physics Letters 91, 173106 (2007). doi: 10.1063/1.2801520 |
[63] |
Su, M. et al. Nanoparticle based curve arrays for multirecognition flexible electronics. Advanced Materials 28, 1369-1374 (2016). doi: 10.1002/adma.201504759 |
[64] |
Yang, Y. X. et al. Loss reduction in sharply bent optical nanofibers by coupling with Au nanoparticles. Optics Communications 497, 127167 (2021). doi: 10.1016/j.optcom.2021.127167 |
[65] |
Zhang, J. B. et al. Optical microfiber or nanofiber: a miniature fiber-optic platform for nanophotonics. Photonics Insights 3, R02 (2024). doi: 10.3788/PI.2024.R02 |
[66] |
Wang, P. et al. Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod. Nano Letters 15, 7581-7586 (2015). doi: 10.1021/acs.nanolett.5b03330 |
[67] |
Mayer, K. M. & Hafner, J. H. Localized surface plasmon resonance sensors. Chemical Reviews 111, 3828-3857 (2011). doi: 10.1021/cr100313v |
[68] |
Foreman, M. R. & Vollmer, F. Theory of resonance shifts of whispering gallery modes by arbitrary plasmonic nanoparticles. New Journal of Physics 15, 083006 (2013). doi: 10.1088/1367-2630/15/8/083006 |
[69] |
Dannenberg, P. H. et al. Laser particle activated cell sorting in microfluidics. Lab on a Chip 22, 2343-2351 (2022). doi: 10.1039/D2LC00235C |
[70] |
Anwar, A. R., Mur, M. & Humar, M. Microcavity- and microlaser-based optical barcoding: a review of encoding techniques and applications. ACS Photonics 10, 1202-1224 (2023). |