[1] Townes, C. H. in A Century of Nature: Twenty-One Discoveries that Changed Science and the World (eds Garwin, L. & Lincoln, T.) 107–112 (University of Chicago Press, Chicago, 2003).
[2] Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958). doi: 10.1103/PhysRev.112.1940
[3] Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960). doi: 10.1038/187493a0
[4] Krausz, F. & Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photonics 8, 205–213 (2014). doi: 10.1038/nphoton.2014.28
[5] Krausz, F. The birth of attosecond physics and its coming of age. Phys. Scripta 91, 63011 (2016). doi: 10.1088/0031-8949/91/6/063011
[6] Hall, R. N. et al. Coherent light emission from GaAs junctions. Phys. Rev. Lett. 9, 366–368 (1962). doi: 10.1103/PhysRevLett.9.366
[7] Popov, Y. M. On the history of the invention of the injection laser. Phys. Uspekhi 47, 1068–1070 (2004). doi: 10.1070/PU2004v047n10ABEH002077
[8] Ning, C. Z. Semiconductor nanolasers and the size-energy-efficiency challenge: a review. Adv. Photonics 1, 014002 (2019). doi: 10.1117/1.AP.1.1.014002
[9] Hill, M. T. & Gather, M. C. Advances in small lasers. Nat. Photonics 8, 908–918 (2014). doi: 10.1038/nphoton.2014.239
[10] Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999). doi: 10.1126/science.284.5421.1819
[11] Ning, C. Z. Semiconductor nanolasers. Phys. Status Solidi 247, 774–788 (2010). doi: 10.1002/pssb.200945436
[12] Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001). doi: 10.1126/science.1060367
[13] Duan, X. F. et al. Single-nanowire elecctrically driven lasers. Nature 421, 241–245 (2003). doi: 10.1038/nature01353
[14] Chin, A. H. et al. Near-infrared semiconductor subwavelength-wire lasers. Appl. Phys. Lett. 88, 163115 (2006). doi: 10.1063/1.2198017
[15] Maslov, A. V. & Ning, C. Z. Far-field emission of a semiconductor nanowire laser. Opt. Letters 29, 572–574 (2004). doi: 10.1364/OL.29.000572
[16] Eaton, S. W. et al. Semiconductor nanowire lasers. Nat. Rev. Mater. 1, 16028 (2016). doi: 10.1038/natrevmats.2016.28
[17] Kaminow, I. P., Mammel, W. L. & Weber, H. P. Metal-clad optical waveguides: analytical and experimental study. Appl. Opt. 13, 396–405 (1974). doi: 10.1364/AO.13.000396
[18] Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229–232 (2003). doi: 10.1038/nmat852
[19] Kusunoki, F. et al. Propagation properties of guided waves in index-guided two-dimensional optical waveguides. Appl. Phys. Lett. 86, 211101 (2005). doi: 10.1063/1.1935034
[20] Pile, D. F. P. et al. Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87, 261114 (2005). doi: 10.1063/1.2149971
[21] Dionne, J. A. et al. Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006). doi: 10.1103/PhysRevB.73.035407
[22] Tanaka, K. & Tanaka, M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl. Phys. Lett.s 82, 1158–1160 (2003). doi: 10.1063/1.1557323
[23] Zia, R. et al. Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A 21, 2442–2446 (2004). doi: 10.1364/JOSAA.21.002442
[24] Nezhad, M. P., Tetz, K. & Fainman, Y. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Opt. Express 12, 4072–4079 (2004). doi: 10.1364/OPEX.12.004072
[25] Noginov, M. A. et al. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt. Lett. 31, 3022–3024 (2006). doi: 10.1364/OL.31.003022
[26] Maier, S. A. Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides. Opt. Commun. 258, 295–299 (2006). doi: 10.1016/j.optcom.2005.07.064
[27] Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nat. Photonics 1, 589–594 (2007). doi: 10.1038/nphoton.2007.171
[28] Maslov, A. V. & Ning, C. Z. Size reduction of a semiconductor nanowire laser by using metal coating. Phys. Simul. Optoelectron. Devices XV 6468, 64680I (2007). doi: 10.1117/12.723786
[29] Manolatou, C. & Rana, F. Subwavelength nanopatch cavities for semiconductor plasmon lasers. IEEE J. Quant. Electron. 44, 435–447 (2008). doi: 10.1109/JQE.2008.916707
[30] Oulton, R. F. et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2, 495–500 (2008). doi: 10.1038/nphoton.2008.131
[31] Huang, J. Q., Kim, S. H. & Scherer, A. Design of a surface-emitting, subwavelength metal-clad disk laser in the visible spectrum. Opt. Express 18, 19581–19591 (2010). doi: 10.1364/OE.18.019581
[32] Perahia, R. et al. Surface-plasmon mode hybridization in subwavelength microdisk lasers. Appl. Phys. Lett. 95, 201114 (2009). doi: 10.1063/1.3266843
[33] Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003). doi: 10.1103/PhysRevLett.90.027402
[34] Hill, M. T. et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009). doi: 10.1364/OE.17.011107
[35] Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009). doi: 10.1038/nature08364
[36] Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009). doi: 10.1038/nature08318
[37] Ma, R. M. & Oulton, R. F. Applications of nanolasers. Nat. Nanotechnol. 14, 12–22 (2019). doi: 10.1038/s41565-018-0320-y
[38] Galanzha, E. I. et al. Spaser as a biological probe. Nat. Commun. 8, 15528 (2017). doi: 10.1038/ncomms15528
[39] Gao, Z. S. et al. Spaser nanoparticles for ultranarrow bandwidth STED super-resolution imaging. Adv. Mater. 32, 1907233 (2020). doi: 10.1002/adma.201907233
[40] Ma, R. M. et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat. Mater. 10, 110–113 (2011). doi: 10.1038/nmat2919
[41] Ma, R. M. et al. Multiplexed and electrically modulated plasmon laser circuit. Nano Lett. 12, 5396–5402 (2012). doi: 10.1021/nl302809a
[42] Ma, R. M. et al. Explosives detection in a lasing plasmon nanocavity. Nat. Nanotechnol. 9, 600–604 (2014). doi: 10.1038/nnano.2014.135
[43] Zhang, Q. et al. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 5, 4953 (2014). doi: 10.1038/ncomms5953
[44] Wang, S. et al. High-yield plasmonic nanolasers with superior stability for sensing in aqueous solution. ACS Photonics 4, 1355–1360 (2017). doi: 10.1021/acsphotonics.7b00438
[45] Wu, Z. Y. et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers. Adv. Opt. Mater. 6, 1800674 (2018). doi: 10.1002/adom.201800674
[46] Lu, Y. J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450–453 (2012). doi: 10.1126/science.1223504
[47] Lu, Y. J. et al. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Lett. 14, 4381–4388 (2014). doi: 10.1021/nl501273u
[48] Gwo, S. & Shih, C. K. Semiconductor plasmonic nanolasers: current status and perspectives. Rep. Prog. Phys. 79, 086501 (2016). doi: 10.1088/0034-4885/79/8/086501
[49] Lee, C. J. et al. Low-threshold plasmonic lasers on a single-crystalline epitaxial silver platform at telecom wavelength. ACS Photonics 4, 1431–1439 (2017). doi: 10.1021/acsphotonics.7b00184
[50] Kress, S. J. P. et al. A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers. Sci. Adv. 3, e1700688 (2017). doi: 10.1126/sciadv.1700688
[51] Keshmariz, E. K., Tait, R. N. & Berini, P. Single-mode surface plasmon distributed feedback lasers. Nanoscale 10, 5914–5922 (2018). doi: 10.1039/C7NR09183D
[52] Huang, C. et al. Formation of lead halide perovskite based plasmonic nanolasers and nanolaser arrays by tailoring the substrate. ACS Nano 12, 3865–3874 (2018). doi: 10.1021/acsnano.8b01206
[53] Zhu, W. Q. et al. Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator. Sci. Adv. 3, e1700909 (2017). doi: 10.1126/sciadv.1700909
[54] Suh, J. Y. et al. Plasmonic bowtie nanolaser arrays. Nano Lett. 12, 5769–5774 (2012). doi: 10.1021/nl303086r
[55] Zhang, C. et al. Plasmonic lasing of nanocavity embedding in metallic nanoantenna array. Nano Lett. 15, 1382–1387 (2015). doi: 10.1021/nl504689s
[56] Lu, C. Y. et al. Metal-cavity surface-emitting microlaser at room temperature. Applied Phys. Lett. 96, 251101 (2010). doi: 10.1063/1.3455316
[57] Yu, K., Lakhani, A. & Wu, M. C. Subwavelength metal-optic semiconductor nanopatch lasers. Opt. Express 18, 8790–8799 (2010). doi: 10.1364/OE.18.008790
[58] Wu, X. Q. et al. Hybrid photon-plasmon nanowire lasers. Nano Lett. 13, 5654–5659 (2013). doi: 10.1021/nl403325j
[59] Nezhad, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nat. Photonics 4, 395–399 (2010). doi: 10.1038/nphoton.2010.88
[60] Kwon, S. H. et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett. 10, 3679–3683 (2010). doi: 10.1021/nl1021706
[61] Shen, K. C. et al. Deep-ultraviolet hyperbolic metacavity laser. Adv. Mater. 30, 1706918 (2018). doi: 10.1002/adma.201706918
[62] Lakhani, A. M. et al. Plasmonic crystal defect nanolaser. Opt. Express 19, 18237–18245 (2011). doi: 10.1364/OE.19.018237
[63] Marell, M. J. H. et al. Plasmonic distributed feedback lasers at telecommunications wavelengths. Opt. Express 19, 15109–15118 (2011). doi: 10.1364/OE.19.015109
[64] Kim, M. K., Lakhani, A. M. & Wu, M. C. Efficient waveguide-coupling of metal-clad nanolaser cavities. Opt. Express 19, 23504–23512 (2011). doi: 10.1364/OE.19.023504
[65] Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012). doi: 10.1038/nature10840
[66] Ding, K. et al. Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection. Phys. Rev. B 85, 041301 (2012). doi: 10.1103/PhysRevB.85.041301
[67] Gu, Q. et al. Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers. IEEE J. Quant. Electron. 50, 499–509 (2014). doi: 10.1109/JQE.2014.2321746
[68] Dolores-Calzadilla, V. et al. Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon. Nat. Commun. 8, 14323 (2017). doi: 10.1038/ncomms14323
[69] Ding, K. et al. Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects. Laser Photonics Rev. 9, 488–497 (2015). doi: 10.1002/lpor.201500037
[70] Ding, K. & Ning, C. Z. Metallic subwavelength-cavity semiconductor nanolasers. Light Sci. Appl. 1, e20 (2012). doi: 10.1038/lsa.2012.20
[71] Wang, X. Y. et al. Lasing enhanced surface plasmon resonance sensing. Nanophotonics 6, 472–478 (2017). doi: 10.1515/nanoph-2016-0006
[72] Cheng, P. J. et al. High-performance plasmonic nanolasers with a nanotrench defect cavity for sensing applications. ACS Photonics 5, 2638–2644 (2018). doi: 10.1021/acsphotonics.8b00337
[73] Fan, X. D. & Yun, S. H. The potential of optofluidic biolasers. Nat. Methods 11, 141–147 (2014). doi: 10.1038/nmeth.2805
[74] Zhou, W. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 8, 506–511 (2013). doi: 10.1038/nnano.2013.99
[75] Van Beijnum, F. et al. Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110, 206802 (2013). doi: 10.1103/PhysRevLett.110.206802
[76] Schokker, A. H. & Koenderink, A. F. Lasing in quasi-periodic and aperiodic plasmon lattices. Optica 3, 686–693 (2016). doi: 10.1364/OPTICA.3.000686
[77] Wang, D. Q. et al. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nat. Nanotechnol. 12, 889–894 (2017). doi: 10.1038/nnano.2017.126
[78] Wang, D. Q. et al. Stretchable nanolasing from hybrid quadrupole plasmons. Nano Lett. 18, 4549–4555 (2018). doi: 10.1021/acs.nanolett.8b01774
[79] Lei, Z. Y. et al. Surface-emitting surface plasmon polariton laser in a second-order distributed feedback defect cavity. ACS Photonics 6, 612–619 (2019). doi: 10.1021/acsphotonics.8b01789
[80] Ding, K. & Ning, C. Z. Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers. Semicond. Sci. Technol. 28, 124002 (2013). doi: 10.1088/0268-1242/28/12/124002
[81] Kudyshev, Z. A. et al. Artificial-intelligence-assisted photonics (Conference Presentation). In Proc. SPIE 11080, Metamaterials, Metadevices, and Metasystems 2019 (SPIE, San Diego, California, 2019).
[82] Stockman, M. I. The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 12, 024004 (2010). doi: 10.1088/2040-8978/12/2/024004
[83] Stockman, M. I. Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011). doi: 10.1364/OE.19.022029
[84] Haken, H. Laser Theory (Springer-Verlag, Berlin, 1983).
[85] Sidiropoulos, T. P. H. et al. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nat. Phys. 10, 870–876 (2014). doi: 10.1038/nphys3103
[86] Ning, C. Z. What is laser threshold? IEEE J. Select. Top. Quant. Electron. 19, 1503604 (2013). doi: 10.1109/JSTQE.2013.2259222
[87] Chow, W. W., Jahnke, F. & Gies, C. Emission properties of nanolasers during the transition to lasing. Light Sci. Appl. 3, e201 (2014). doi: 10.1038/lsa.2014.82
[88] Stevens, M. J. et al. High-order temporal coherences of chaotic and laser light. Opt. Express 18, 1430–1437 (2010). doi: 10.1364/OE.18.001430
[89] Feynman, R. P. There's plenty of room at the bottom. Caltech Eng. Sci. 23, 22–36 (1960).
[90] Novotny, L. & Stranick, S. J. Near-field optical microscopy and spectroscopy with pointed probes. Ann. Rev. Phys. Chem. 57, 303–331 (2006). doi: 10.1146/annurev.physchem.56.092503.141236
[91] Johnson, T. W. et al. Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids. ACS Nano 6, 9168–9174 (2012). doi: 10.1021/nn303496g
[92] Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge University Press, Cambridge, 2012).
[93] Stockman, M. I. Nanoplasmonic sensing and detection. Science 348, 287–288 (2015). doi: 10.1126/science.aaa6805
[94] Stockman, M. I., Faleev, S. V. & Bergman, D. J. Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics? Phys. Rev. Lett. 87, 167401 (2001). doi: 10.1103/PhysRevLett.87.167401
[95] Pauli, W. The connection between spin and statistics. Phys. Rev. J. Arch. 58, 716–722 (1940). doi: 10.1103/PhysRev.58.716
[96] Stockman, M. I. Spasers explained. Nat. Photonics 2, 327–329 (2008).
[97] Stockman, M. I. & Bergman, D. J. Surface plasmon amplification by stimulated emission of radiation (SPASER). US patent: US20040155184A1 (2009).
[98] Stockman, M. I. & Bergman, D. J. Method for surface plasmon amplification by stimulated emission of radiation (SPASER). US patent: US8017406B2 (2011).
[99] Stockman, M. Spasers to speed up CMOS processors. US patent: 10, 096, 675 (2018).
[100] Brorson, S. D., Yokoyama, H. & Ippen, E. P. Spontaneous emission rate alteration in optical waveguide structures. IEEE J. Quant. Electron. 26, 1492–1499 (1990). doi: 10.1109/3.102626
[101] Yokoyama, H. et al. Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities. Opt. Quant. Electron. 24, S245–S272 (1992). doi: 10.1007/BF00625827
[102] Bjork, G. & Yamamoto, Y. Analysis of semiconductor microcavity lasers using rate equations. IEEE J. Quant. Electron. 27, 2386–2396 (1991). doi: 10.1109/3.100877
[103] Noda, S. Seeking the ultimate nanolaser. Science 314, 260–261 (2006). doi: 10.1126/science.1131322
[104] Ma, R. M. Lasing under ultralow pumping. Nat. Mater. 18, 1152–1153 (2019). doi: 10.1038/s41563-019-0513-2
[105] Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946). doi: 10.1103/PhysRev.69.37
[106] Altug, H., Englund, D. & Vučković, J. Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2, 484–488 (2006). doi: 10.1038/nphys343
[107] Lau, E. K. et al. Enhanced modulation bandwidth of nanocavity light emitting devices. Opt. Express 17, 7790–7799 (2009). doi: 10.1364/OE.17.007790
[108] Ni, C. Y. A. & Chuang, S. L. Theory of high-speed nanolasers and nanoLEDs. Opt. Express 20, 16450–16470 (2012). doi: 10.1364/OE.20.016450
[109] Pan, S. H. et al. Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures. Prog. Quant. Electron. 59, 1–18 (2018). doi: 10.1016/j.pquantelec.2018.05.001
[110] MacDonald, K. F. et al. Ultrafast active plasmonics. Nat. Photonics 3, 55–58 (2009). doi: 10.1038/nphoton.2008.249
[111] Shore, K. A. Modulation bandwidth of metal-clad semiconductor nanolasers with cavity-enhanced spontaneous emission. Electron. Lett. 46, 1688–1689 (2010). doi: 10.1049/el.2010.2535
[112] Suhr, T. et al. Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission. Opt. Express 18, 11230–11241 (2010). doi: 10.1364/OE.18.011230
[113] Aust, R. et al. Modulation response of nanolasers: what rate equation approaches miss. Opt. Quant. Electron. 48, 109 (2016). doi: 10.1007/s11082-016-0378-4
[114] Li, D. B. & Ning, C. Z. Peculiar features of confinement factors in a metal-semiconductor waveguide. Appl. Phys. Lett. 96, 181109 (2010). doi: 10.1063/1.3425896
[115] Maslov, A. V. & Ning, C. Z. Modal gain in a semiconductor nanowire laser with anisotropic bandstructure. IEEE J. Quant. Electron. 40, 1389–1397 (2004). doi: 10.1109/JQE.2004.834767
[116] Li, D. B. & Ning, C. Z. Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure. Phys. Rev. B 80, 153304 (2009). doi: 10.1103/PhysRevB.80.153304
[117] Ho, J. et al. Low-threshold near-infrared GaAs-AlGaAs core-shell nanowire plasmon laser. ACS Photonics 2, 165–171 (2015). doi: 10.1021/ph5003945
[118] Chou, Y. H. et al. High-operation-temperature plasmonic nanolasers on single-crystalline aluminum. Nano Lett. 16, 3179–3186 (2016). doi: 10.1021/acs.nanolett.6b00537
[119] Khurgin, J. B. & Sun, G. Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes. Nat. Photonics 8, 468–473 (2014). doi: 10.1038/nphoton.2014.94
[120] Wang, S. et al. Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit. Nat. Commun. 8, 1889 (2017). doi: 10.1038/s41467-017-01662-6
[121] Fernandez-Bravo, A. et al. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nat. Mater. 18, 1172–1176 (2019). doi: 10.1038/s41563-019-0482-5
[122] Ulrich, S. M. et al. Photon statistics of semiconductor microcavity lasers. Phys. Rev. Lett. 98, 043906 (2007). doi: 10.1103/PhysRevLett.98.043906
[123] Chow, W. W. & Reitzenstein, S. Quantum-optical influences in optoelectronics—an introduction. Appl. Phys. Rev. 5, 041302 (2018). doi: 10.1063/1.5045580
[124] Ding, K. et al. An electrical injection metallic cavity nanolaser with azimuthal polarization. Appl. Phys. Lett. 102, 041110 (2013). doi: 10.1063/1.4775803
[125] Ding, K. et al. Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. Opt. Express 21, 4728–4733 (2013). doi: 10.1364/OE.21.004728
[126] Li, D. B. & Ning, C. Z. Interplay of various loss mechanisms and ultimate size limit of a surface plasmon polariton semiconductor nanolaser. Opt. Express 20, 16348–16357 (2012). doi: 10.1364/OE.20.016348
[127] Li, D. & Ning, C. Z. Electrical injection in longitudinal and coaxial heterostructure nanowires: A comparative study through a three-dimensional simulation. Nano Lett. 8, 4234–4237 (2008). doi: 10.1021/nl801894z
[128] Hu, J. et al. Fringing field effects on electrical resistivity of semiconductor nanowire-metal contacts. Appl. Phys. Lett. 92, 083503 (2008). doi: 10.1063/1.2889534
[129] Ding, K. et al. Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K. Appl. Phys. Lett. 98, 231108 (2011). doi: 10.1063/1.3598961
[130] Lee, J. H. et al. Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers. Opt. Express 19, 21524–21531 (2011). doi: 10.1364/OE.19.021524
[131] Wang, S., Chen, H. Z. & Ma, R. M. High performance plasmonic nanolasers with external quantum efficiency exceeding 10%. Nano Lett. 18, 7942–7948 (2018). doi: 10.1021/acs.nanolett.8b03890
[132] Chen, H. Z. et al. Imaging the dark emission of spasers. Sci. Adv. 3, e1601962 (2017). doi: 10.1126/sciadv.1601962
[133] Qi, B. K. et al. Parity-time symmetry synthetic lasers: physics and devices. Adv. Opt. Mater. 7, 1900694 (2019). doi: 10.1002/adom.201900694
[134] Chen, H. Z. et al. Revealing the missing dimension at an exceptional point. Nat. Phys. https://doi.org/10.1038/s41567-020-0807-y (2020).
[135] Wu, J. S., Apalkov, V. & Stockman, M. I. Topological spaser. Phys. Rev. Lett. 124, 017701 (2020).
[136] Xie, Y. Y. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 15, 125–130 (2020). doi: 10.1038/s41565-019-0611-y
[137] Shao, Z. K. et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol. 15, 67–72 (2020). doi: 10.1038/s41565-019-0584-x
[138] Meng, X. G. et al. Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity. Sci. Rep. 3, 1241 (2013). doi: 10.1038/srep01241
[139] Meng, X. G. et al. Wavelength-tunable spasing in the visible. Nano Lett. 13, 4106–4112 (2013). doi: 10.1021/nl4015827
[140] Song, P. et al. Three-level spaser for next-generation luminescent nanoprobe. Sci. Adv. 4, eaat0292 (2018). doi: 10.1126/sciadv.aat0292
[141] Bordo, V. G. Cooperative effects in spherical spasers: Ab initio analytical model. Phys. Rev. B 95, 235412 (2017). doi: 10.1103/PhysRevB.95.235412
[142] Shesterikov, A. V. et al. On the effect of dipole–dipole interactions on the quantum statistics of surface plasmons in multiparticle spaser systems. JETP Lett. 107, 435–439 (2018). doi: 10.1134/S0021364018070081
[143] Petrosyan, L. S. & Shahbazyan, T. V. Spaser quenching by off-resonant plasmon modes. Phys. Rev. B 96, 075423 (2017). doi: 10.1103/PhysRevB.96.075423
[144] Zheludev, N. I. et al. Lasing spaser. Nat. Photonics 2, 351–354 (2008).
[145] Xiao, S. M. et al. Loss-free and active optical negative-index metamaterials. Nature 466, 735–738 (2010). doi: 10.1038/nature09278
[146] Meng, X. G. et al. Highly directional spaser array for the red wavelength region. Laser Photonics Rev. 8, 896–903 (2014). doi: 10.1002/lpor.201400056
[147] Huang, Y. W. et al. Toroidal lasing spaser. Sci. Rep. 3, 1237 (2013). doi: 10.1038/srep01237
[148] Pourjamal, S. et al. Lasing in Ni nanodisk arrays. ACS Nano 13, 5686–5692 (2019). doi: 10.1021/acsnano.9b01006
[149] Chandrasekar, R. et al. Lasing action with gold nanorod hyperbolic metamaterials. ACS Photonics 4, 674–680 (2017). doi: 10.1021/acsphotonics.7b00010
[150] Yang, A. K. et al. Real-time tunable lasing from plasmonic nanocavity arrays. Nat. Commun. 6, 6939 (2015). doi: 10.1038/ncomms7939
[151] Ramezani, M. et al. Plasmon-exciton-polariton lasing. Optica 4, 31–37 (2017). doi: 10.1364/OPTICA.4.000031
[152] Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994). doi: 10.1364/OL.19.000780
[153] Hell, S. W. Microscopy and its focal switch. Nat. Methods 6, 24–32 (2009). doi: 10.1038/nmeth.1291
[154] Pustovit, V. N. et al. Coulomb and quenching effects in small nanoparticle-based spasers. Phys. Rev. B 93, 165432 (2016). doi: 10.1103/PhysRevB.93.165432
[155] Li, X. F. & Yu, S. F. Design of low-threshold compact Au-nanoparticle lasers. Opt. Lett. 35, 2535–2537 (2010). doi: 10.1364/OL.35.002535
[156] Baranov, D. G. et al. Exactly solvable toy model for surface plasmon amplification by stimulated emission of radiation. Optics Express 21, 10779–10791 (2013). doi: 10.1364/OE.21.010779
[157] Arnold, N. et al. Spasers with retardation and gain saturation: electrodynamic description of fields and optical cross-sections. Opt. Mater. Express 5, 2546–2577 (2015). doi: 10.1364/OME.5.002546
[158] Nagra, A. S. & York, R. A. FDTD analysis of wave propagation in nonlinear absorbing and gain media. IEEE Trans. Antennas Propag. 46, 334–340 (1998). doi: 10.1109/8.662652
[159] Chang, S. H. & Taflove, A. Finite-difference time-domain model of lasing action in a four-level two-electron atomic system. Opt. Express 12, 3827–3833 (2004). doi: 10.1364/OPEX.12.003827
[160] Gongora, J. S. T. et al. Energy equipartition and unidirectional emission in a spaser nanolaser. Laser Photonics Rev. 10, 432–440 (2016). doi: 10.1002/lpor.201500239
[161] Chua, S. L. et al. Modeling of threshold and dynamics behavior of organic nanostructured lasers. J. Mater. Chem. C 2, 1463–1473 (2014). doi: 10.1039/c3tc31870b
[162] Pusch, A. et al. Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: A maxwell-bloch langevin approach. ACS Nano 6, 2420–2431 (2012). doi: 10.1021/nn204692x
[163] Kristanz, G. V. et al. Power balance and temperature in optically pumped spasers and nanolasers. ACS Photonics 5, 3695–3703 (2018). doi: 10.1021/acsphotonics.8b00705
[164] Trivedi, D. J. et al. Model for describing plasmonic nanolasers using Maxwell-Liouville equations with finite-difference time-domain calculations. Phys. Rev. A 96, 053825 (2017). doi: 10.1103/PhysRevA.96.053825
[165] Azzam, S. I. et al. Exploring time-resolved multiphysics of active plasmonic systems with experiment-based gain models. Laser Photonics Rev. 13, 1800071 (2018). doi: 10.1002/lpor.201800071
[166] Ning, C. Z. in Selforganization in Complex Systems: the Past, Present, and Future of Synergetics (eds Wunner, G. & Pelster, A.) 109–128 (Springer, Cham, 2016).
[167] Fan, F. et al. Fabrication and room temperature operation of semiconductor nano-ring lasers using a general applicable membrane transfer method. Appl. Phys. Lett. 110, 171105 (2017). doi: 10.1063/1.4982621
[168] Li, D. B. & Ning, C. Z. All-semiconductor active plasmonic system in mid-infrared wavelengths. Opt. Express 19, 14594–14603 (2011). doi: 10.1364/OE.19.014594
[169] Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016). doi: 10.1038/nature17974
[170] Li, Y. Z. et al. Optical properties and light-emission device applications of 2-D Layered Semiconductors. In Proc. IEEE 1–28, https://doi.org/10.1109/JPROC.2019.2936424 (2019).
[171] Zheng, D. et al. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett. 17, 3809–3814 (2017). doi: 10.1021/acs.nanolett.7b01176
[172] Wang, Z. et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat. Commun. 7, 11283 (2016). doi: 10.1038/ncomms11283
[173] Lee, B. et al. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano Lett. 15, 3646–3653 (2015). doi: 10.1021/acs.nanolett.5b01563
[174] Han, X. B. et al. Rabi splitting in a plasmonic nanocavity coupled to a WS2 monolayer at room temperature. ACS Photonics 5, 3970–3976 (2018). doi: 10.1021/acsphotonics.8b00931
[175] Chernikov, A. et al. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photonics 9, 466–470 (2015). doi: 10.1038/nphoton.2015.104
[176] Wang, Z. et al. Excitonic complexes and optical gain in two-dimensional molybdenum ditelluride well below the Mott transition. Light Sci. Appl. 9, 39 (2020). doi: 10.1038/s41377-020-0278-z
[177] Wu, S. F. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015). doi: 10.1038/nature14290
[178] Ye, Y. et al. Monolayer excitonic laser. Nat. Photonics 9, 733–737 (2015). doi: 10.1038/nphoton.2015.197
[179] Li, Y. Z. et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol. 12, 987–992 (2017). doi: 10.1038/nnano.2017.128
[180] Kavokin, A. V. et al. Microcavities (Oxford University Press, Oxford, 2011).
[181] Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013). doi: 10.1103/RevModPhys.85.299
[182] Kasprzak, J. et al. Bose-Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006). doi: 10.1038/nature05131
[183] Daskalakis, K. S. et al. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271–278 (2014). doi: 10.1038/nmat3874
[184] Plumhof, J. D. et al. Room-temperature Bose–Einstein condensation of cavity exciton-polaritons in a polymer. Nat. Mater. 13, 247–252 (2014). doi: 10.1038/nmat3825
[185] Klaers, J. et al. Bose-Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010). doi: 10.1038/nature09567
[186] Klaers, J., Vewinger, F. & Weitz, M. Thermalization of a two-dimensional photonic gas in a 'white wall' photon box. Nat. Phys. 6, 512–515 (2010). doi: 10.1038/nphys1680
[187] Marelic, J., Walker, B. T. & Nyman, R. A. Phase-space views into dye-microcavity thermalized and condensed photons. Phys. Rev. A 94, 063812 (2016). doi: 10.1103/PhysRevA.94.063812
[188] Marelic, J. et al. Spatiotemporal coherence of non-equilibrium multimode photon condensates. N. J. Phys. 18, 103012 (2016). doi: 10.1088/1367-2630/18/10/103012
[189] Walker, B. T. et al. Driven-dissipative non-equilibrium Bose–Einstein condensation of less than ten photons. Nat. Phys. 14, 1173–1177 (2018). doi: 10.1038/s41567-018-0270-1
[190] Hakala, T. K. et al. Bose–Einstein condensation in a plasmonic lattice. Nat. Phys. 14, 739–744 (2018). doi: 10.1038/s41567-018-0109-9
[191] Nyman, R. A. & Walker, B. T. Bose–Einstein condensation of photons from the thermodynamic limit to small photon numbers. J. Mod. Opt. 65, 754–766 (2018). doi: 10.1080/09500340.2017.1404655
[192] Eggleston, M. S. et al. Optical antenna enhanced spontaneous emission. Proc. Natl Acad. Sci. USA 112, 1704–1709 (2015). doi: 10.1073/pnas.1423294112
[193] Li, D. B. & Stockman, M. I. Electric spaser in the extreme quantum limit. Phys. Rev. Lett. 110, 106803 (2013). doi: 10.1103/PhysRevLett.110.106803