[1] Marquet, P. et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468 (2005). doi: 10.1364/OL.30.000468
[2] Popescu, G., Ikeda, T., Dasari, R. R. & Feld, M. S. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 31, 775 (2006). doi: 10.1364/OL.31.000775
[3] Rosen, J. & Brooker, G. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photonics 2, 190-195 (2008). doi: 10.1038/nphoton.2007.300
[4] Tippie, A. E., Kumar, A. & Fienup, J. R. High-resolution synthetic-aperture digital holography with digital phase and pupil correction. Opt. Express 19, 12027 (2011). doi: 10.1364/OE.19.012027
[5] Holloway, J. et al. Toward long-distance subdiffraction imaging using coherent camera arrays. IEEE Trans. Comput. Imaging 2, 251-265 (2016). doi: 10.1109/TCI.2016.2557067
[6] Holloway, J., Wu, Y., Sharma, M. K., Cossairt, O. & Veeraraghavan, A. SAVI: synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography. Sci. Adv. 3, e1602564 (2017). doi: 10.1126/sciadv.1602564
[7] Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nat. Photonics 4, 320-322 (2010). doi: 10.1038/nphoton.2010.3
[8] Katz, O., Small, E. & Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nat. Photonics 6, 549-553 (2012). doi: 10.1038/nphoton.2012.150
[9] Lai, P., Wang, L., Tay, J. W. & Wang, L. V. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nat. Photonics 9, 126-132 (2015). doi: 10.1038/nphoton.2014.322
[10] Liang, J., Grimm, B., Goelz, S. & Bille, J. F. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J. Opt. Soc. Am. A 11, 1949 (1994). doi: 10.1364/JOSAA.11.001949
[11] Taylor, L. & Talghader, J. Monitoring and analysis of thermal deformation waves with a high-speed phase measurement system. Appl. Opt. 54, 9010 (2015). doi: 10.1364/AO.54.009010
[12] Watnik, A. T. & Gardner, D. F. Wavefront sensing in deep turbulence. Opt. Photonics News 29, 38 (2018).
[13] Platt, B. C. & Shack, R. History and principles of shack-hartmann wavefront sensing. J. Refract. Surg. 17, S573-S577 (2001). doi: 10.3928/1081-597X-20010901-13
[14] Ragazzoni, R., Diolaiti, E. & Vernet, E. A pyramid wavefront sensor with no dynamic modulation. Opt. Commun. 208, 51-60 (2002). doi: 10.1016/S0030-4018(02)01580-8
[15] Roddier, F. Curvature sensing and compensation: a new concept in adaptive optics. Appl. Opt. 27, 1223 (1988). doi: 10.1364/AO.27.001223
[16] Shack-Hartmann Wavefront Sensors. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5287.
[17] Medecki, H., Tejnil, E., Goldberg, K. A. & Bokor, J. Phase-shifting point diffraction interferometer. Opt. Lett. 21, 1526 (1996). doi: 10.1364/OL.21.001526
[18] Dussan, L., Dussan, L. C., Ghebremichael, F. & Chen, K. Holographic wavefront sensor. Opt. Eng. 48, 085801 (2009). doi: 10.1117/1.3204232
[19] Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642-1645 (2006). doi: 10.1126/science.1127344
[20] Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793-796 (2006). doi: 10.1038/nmeth929
[21] Zheng, G., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 7, 739-745 (2013). doi: 10.1038/nphoton.2013.187
[22] Velten, A. et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun. 3, 745 (2012). doi: 10.1038/ncomms1747
[23] Bigas, M., Cabruja, E., Forest, J. & Salvi, J. Review of CMOS image sensors. Microelectron. J. 37, 433-451 (2006). doi: 10.1016/j.mejo.2005.07.002
[24] Zhang, Z., You, Z., Chu, D. & Professor Chu, O. D. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Sci. Appl 3, 213 (2014).
[25] Gerchberg, R. W. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237-246 (1972). http://ci.nii.ac.jp/naid/10006743409
[26] Shechtman, Y. et al. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32, 87-109 (2015). doi: 10.1109/MSP.2014.2352673
[27] Candès, E. J., Li, X. & Soltanolkotabi, M. Phase retrieval from coded diffraction patterns. Appl. Comput. Harmon. Anal. 39, 277-299 (2015). doi: 10.1016/j.acha.2014.09.004
[28] Metzler, C. A. et al. Coherent inverse scattering via transmission matrices: Efficient phase retrieval algorithms and a public dataset. in 2017 IEEE International Conference on Computational Photography, ICCP 2017 - Proceedings 1-16 (IEEE, 2017).
[29] Metzler, C. A., Schniter, P., Veeraraghavan, A. & Baraniuk, R. G. prDeep: robust phase retrieval with a flexible deep network. arXiv: 1803.00212v1 (2018).
[30] Kohler, C., Zhang, F. & Osten, W. Characterization of a spatial light modulator and its application in phase retrieval. Appl. Opt. 48, 4003 (2009). doi: 10.1364/AO.48.004003
[31] Gemayel, P., Colicchio, B., Dieterlen, A. & Ambs, P. Cross-talk compensation of a spatial light modulator for iterative phase retrieval applications. Appl. Opt. 55, 802-810 (2016). doi: 10.1364/AO.55.000802
[32] Wang, B.-Y., Han, L., Yang, Y., Yue, Q.-Y. & Guo, C.-S. Wavefront sensing based on a spatial light modulator and incremental binary random sampling. Opt. Lett. 42, 603 (2017). doi: 10.1364/OL.42.000603
[33] Horisaki, R., Ogura, Y., Aino, M. & Tanida, J. Single-shot phase imaging with a coded aperture. Opt. Lett. 39, 6466 (2014). doi: 10.1364/OL.39.006466
[34] Wang, C., Dun, X., Fu, Q. & Heidrich, W. Ultra-high resolution coded wavefront sensor. Opt. Express 25, 13736 (2017). doi: 10.1364/OE.25.013736
[35] Katkovnik, V., Shevkunov, I., Petrov, N. V. & Egiazarian, K. Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments. Optica 4, 786 (2017). doi: 10.1364/OPTICA.4.000786
[36] Zhang, F., Pedrini, G. & Osten, W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation. Phys. Rev. A 75, 1-4 (2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000075000004043805000001&idtype=cvips&gifs=Yes
[37] Goodman, J. Introduction to Fourier optics. (Roberts and Company Publishers, 2005).
[38] Moravec, M. L., Romberg, J. K. & Baraniuk, R. G. in International Society for Optics and Photonics (eds Van De Ville, D., Goyal, V. K. & Papadakis, M.), Vol. 6701, 670120 (International Society for Optics and Photonics, 2007).
[39] Delano, E. Primary aberrations of Fresnel lenses. J. Opt. Soc. Am. 64, 459-468 (1974). doi: 10.1364/JOSA.64.000459
[40] Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 1-4 (2010). http://www.ncbi.nlm.nih.gov/pubmed/20366410
[41] Chaigne, T. et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nat. Photonics 8, 58-64 (2014). doi: 10.1038/nphoton.2013.307
[42] O'Toole, M., Lindell, D. B. & Wetzstein, G. Confocal non-line-of-sight imaging based on the light-cone transform. Nature 555, 338-341 (2018). doi: 10.1038/nature25489
[43] Mudanyali, O. et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10, 1417 (2010). doi: 10.1039/c000453g
[44] Seo, S., Su, T.-W., Tseng, D. K., Erlinger, A. & Ozcan, A. Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab Chip 9, 777-787 (2009). doi: 10.1039/B813943A
[45] Coskun, A. F., Su, T.-W. & Ozcan, A. Wide field-of-view lens-free fluorescent imaging on a chip. Lab Chip 10, 824 (2010). doi: 10.1039/b926561a
[46] Adams, J. K. et al. Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope. Sci. Adv. 3, e1701548 (2017). doi: 10.1126/sciadv.1701548
[47] Antipa, N. et al. DiffuserCam: lensless single-exposure 3D imaging. Optica 5, 1 (2018). doi: 10.1364/OPTICA.5.000001
[48] XY Spatial Light Modulators | AVR Optics Inc., http://avr-optics.com/xy-spatial-light-modulators/.
[49] Colburn, S., Zhan, A. & Majumdar, A. Tunable metasurfaces via subwavelength phase shifters with uniform amplitude. Sci. Rep. 7, 40174 (2017). doi: 10.1038/srep40174
[50] Schmidt, J. D. Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE, 2010).