[1] Massines, F. et al. On the nature of the luminescence emitted by a polypropylene film after interaction with a cold plasma at low temperature. J. Appl. Phys. 81, 937-943 (1997). doi: 10.1063/1.364186
[2] Hasegawa, A. Drift-wave instabilities of a compressional mode in a high-β Plasma. Phys. Rev. Lett. 27, 11-14 (1971). doi: 10.1103/PhysRevLett.27.11
[3] Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media. (Oxford: Pergamon Press, 1960).
[4] Ilgisonis, V. I. et al. Geodesic acoustic modes and zonal flows in rotating large-aspect-ratio tokamak plasmas. Plasma Phys. Controlled Fusion 53, 065008 (2011). doi: 10.1088/0741-3335/53/6/065008
[5] Hirshman, S. P. & Sigmar, D. J. Neoclassical transport of impurities in tokamak plasmas. Nucl. Fusion 21, 1079-1201 (1981). doi: 10.1088/0029-5515/21/9/003
[6] Lindl, J. Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Plasma Plasmas 2, 3933-4024 (1995).
[7] Pile, D. Plasma X-ray source. Nat. Photon. 9, 631 (2015).
[8] Shivarova, A., Stoychev, T. & Russeva, S. Surface wave propagation along a current-carrying warm plasma column. J. Phys. D: Appl. Phys. 8, 383-393 (1975). doi: 10.1088/0022-3727/8/4/010
[9] Aliev, Y. M. & Brodin, G. Instability of a strongly inhomogeneous plasma. Phys. Rev. A 42, 2374-2378 (1990). doi: 10.1103/PhysRevA.42.2374
[10] Buti, B. Advances in Space Plasma Physics. (Singapore: World Scientific, 1985).
[11] Gao, W. L. et al. Photonic Weyl degeneracies in magnetized plasma. Nat. Commun. 7, 12435 (2016). doi: 10.1038/ncomms12435
[12] Wang, D. Y. et al. Photonic Weyl points due to broken time-reversal symmetry in magnetized semiconductor. Nat. Phys. 15, 1150-1155 (2019). doi: 10.1038/s41567-019-0612-7
[13] Ida, K. Experimental studies of the physical mechanism determining the radial electric field and its radial structure in a toroidal plasma. Plasma Phys. Controlled Fusion 40, 1429-1488 (1998). doi: 10.1088/0741-3335/40/8/002
[14] Kriesel, J. M. & Driscoll, C. F. Measurements of viscosity in pure-electron plasmas. Phys. Rev. Lett. 87, 135003 (2001). doi: 10.1103/PhysRevLett.87.135003
[15] Shen, H. T., Zhen, B. & Fu, L. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, 146402 (2018). doi: 10.1103/PhysRevLett.120.146402
[16] Rudner, M. S. & Levitov, L. S. Topological transition in a non-Hermitian quantum walk. Phys. Rev. Lett. 102, 065703 (2009). doi: 10.1103/PhysRevLett.102.065703
[17] Lee, T. E. Anomalous edge state in a non-Hermitian lattice. Phys. Rev. Lett. 116, 133903 (2016). doi: 10.1103/PhysRevLett.116.133903
[18] Leykam, D. et al. Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett. 118, 040401 (2017).
[19] Gong, Z. P. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018).
[20] Yao, S. Y. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018). doi: 10.1103/PhysRevLett.121.086803
[21] Chen, W. J. et al. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192-196 (2017). doi: 10.1038/nature23281
[22] Zhou, H. Y. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009-1012 (2018). doi: 10.1126/science.aap9859
[23] Miri, M. A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019). doi: 10.1126/science.aar7709
[24] El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11-19 (2018). doi: 10.1038/nphys4323
[25] Carlström, J. & Bergholtz, E. J. Exceptional links and twisted Fermi ribbons in non-Hermitian systems. Phys. Rev. A 98, 042114 (2018). doi: 10.1103/PhysRevA.98.042114
[26] Berry, M. V. & Mondragon, R. J. Diabolical points in one-dimensional Hamiltonians quartic in the momentum. J. Phys. A: Math. Gen. 19, 873-885 (1986). doi: 10.1088/0305-4470/19/6/018
[27] Berry, M. V. & Jeffrey, M. R. Conical diffraction complexified: dichroism and the transition to double refraction. J. Opt. A: Pure Appl. Opt. 8, 1043-1051 (2006). doi: 10.1088/1464-4258/8/12/003
[28] Moiseyev, N. Non-Hermitian Quantum Mechanics. (Cambridge University Press, Cambridge, 2011).
[29] Heiss, W. D. The physics of exceptional points. J. Phys. A: Math. Theor. 45, 444016 (2012). doi: 10.1088/1751-8113/45/44/444016
[30] Cerjan, A. et al. Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges. Phys. Rev. B 97, 075128 (2018). doi: 10.1103/PhysRevB.97.075128
[31] Kullig, J., Yi, C. H. & Wiersig, J. Exceptional points by coupling of modes with different angular momenta in deformed microdisks: a perturbative analysis. Phys. Rev. A 98, 023851 (2018). doi: 10.1103/PhysRevA.98.023851
[32] Zhang, Z. Y. et al. Non-Hermitian optics in atomic systems. J. Phys. B: At. Mol. Opt. Phys. 51, 072001 (2018). doi: 10.1088/1361-6455/aaaf9f
[33] Kullig, J. et al. Exceptional points of third-order in a layered optical microdisk cavity. N. J. Phys. 20, 083016 (2018). doi: 10.1088/1367-2630/aad594
[34] Malzard, S. & Schomerus, H. Bulk and edge-state arcs in non-Hermitian coupled-resonator arrays. Phys. Rev. A 98, 033807 (2018). doi: 10.1103/PhysRevA.98.033807
[35] Xu, Y., Wang, S. T. & Duan, L. M. Weyl exceptional rings in a three-dimensional dissipative cold atomic gas. Phys. Rev. Lett. 118, 045701 (2017). doi: 10.1103/PhysRevLett.118.045701
[36] Keck, F., Korsch, H. J. & Mossmann, S. Unfolding a diabolic point: a generalized crossing scenario. J. Phys. A: Math. Theor. 36, 2125-2137 (2003).
[37] Zyuzin, A. A. & Zyuzin, A. Y. Flat band in disorder-driven non-Hermitian Weyl semimetals. Phys. Rev. B 97, 041203 (2018). doi: 10.1103/PhysRevB.97.041203
[38] González, J. & Molina, R. A. Topological protection from exceptional points in Weyl and nodal-line semimetals. Phys. Rev. B 96, 045437 (2017). doi: 10.1103/PhysRevB.96.045437
[39] Doveil, F., Vosluisant, Y. & Tsunoda, S. I. Localization of langmuir waves in a fluctuating plasma. Phys. Rev. Lett. 69, 2074-2077 (1992). doi: 10.1103/PhysRevLett.69.2074
[40] Lee, H. J. & Cho, S. H. Boundary conditions for surface waves propagating along the interface of plasma flow and free space. J. Plasma Phys. 58, 409-419 (1997). doi: 10.1017/S002237789700603X