[1] Leon-Saval, S. G. et al. Supercontinuum generation in submicron fibre waveguides. Optics Express 12, 2864-2869 (2004). doi: 10.1364/OPEX.12.002864
[2] Foster, M. A. et al. Nonlinear optics in photonic nanowires. Optics Express 16, 1300-1320 (2008). doi: 10.1364/OE.16.001300
[3] Zhao, R. W. et al. Optical modulation of microfibers and application to ultrafast fiber lasers. RSC Advances 8, 9120-9124 (2018). doi: 10.1039/C8RA00740C
[4] Li, W. et al. Ultrafast all-optical graphene modulator. Nano Letters 14, 955-959 (2014). doi: 10.1021/nl404356t
[5] Li, Y. H. et al. Optical microfiber-based ultrafast fiber lasers. Applied Physics B 125, 192 (2019).
[6] Hecht, B. et al. Scanning near-field optical microscopy with aperture probes: fundamentals and applications. The Journal of Chemical Physics 112, 7761-7774 (2000). doi: 10.1063/1.481382
[7] Hao, X. et al. Far-field super-resolution imaging using near-field illumination by micro-fiber. Applied Physics Letters 102, 013104 (2013). doi: 10.1063/1.4773572
[8] Guo, X. et al. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Letters 9, 4515-4519 (2009). doi: 10.1021/nl902860d
[9] Frawley, M. C. et al. Selective particle trapping and optical binding in the evanescent field of an optical nanofiber. Optics Express 22, 16322-16334 (2014). doi: 10.1364/OE.22.016322
[10] Sagué, G. et al. Cold-atom physics using ultrathin optical fibers: Light-induced dipole forces and surface interactions. Physical Review Letters 99, 163602 (2007). doi: 10.1103/PhysRevLett.99.163602
[11] Fujiwara, M. et al. Highly efficient coupling of photons from nanoemitters into single-mode optical fibers. Nano Letters 11, 4362-4365 (2011). doi: 10.1021/nl2024867
[12] Jones, R. et al. Collectively enhanced chiral photon emission from an atomic array near a nanofiber. Physical Review Letters 124, 093601 (2020). doi: 10.1103/PhysRevLett.124.093601
[13] Rajasree, K. S. et al. Generation of cold Rydberg atoms at submicron distances from an optical nanofiber. Physical Review Research 2, 012038 (2020). doi: 10.1103/PhysRevResearch.2.012038
[14] Farnesi, D. et al. Quasi-distributed and wavelength selective addressing of optical micro-resonators based on long period fiber gratings. Optics Express 23, 21175-21180 (2015). doi: 10.1364/OE.23.021175
[15] Chiavaioli, F. et al. Long period grating-based fiber coupling to WGM microresonators. Micromachines 9, 366 (2018). doi: 10.3390/mi9070366
[16] Zhang, L., Lou, J. Y. & Tong, L. M. Micro/nanofiber optical sensors. Photonic Sensors 1, 31-42 (2011). doi: 10.1007/s13320-010-0022-z
[17] Yan, S. C. & Xu, F. A review on optical microfibers in fluidic applications. Journal of Micromechanics and Microengineering 27, 093001 (2017). doi: 10.1088/1361-6439/aa7a45
[18] Liu, T. et al. Highly compact vector bending sensor with microfiber-assisted mach–Zehnder interferometer. IEEE Sensors Journal 19, 3343-3347 (2019).
[19] Wang, T. et al. Flexible minimally invasive coherent anti-Stokes Raman spectroscopy (CARS) measurement method with tapered optical fiber probe for single-cell application. PhotoniX 3, 11 (2022). doi: 10.1186/s43074-022-00058-0
[20] Tong, L. M. et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816-819 (2003). doi: 10.1038/nature02193
[21] Lou, J. Y., Wang, Y. P. & Tong, L. M. Microfiber optical sensors: a review. Sensors 14, 5823-5844 (2014). doi: 10.3390/s140405823
[22] Ma, C. J. et al. Design and fabrication of tapered microfiber waveguide with good optical and mechanical performance. Journal of Modern Optics 61, 683-687 (2014). doi: 10.1080/09500340.2014.909541
[23] Wu, X. Q. & Tong, L. M. Optical microfibers and nanofibers. Nanophotonics 2, 407-428 (2013). doi: 10.1515/nanoph-2013-0033
[24] Brambilla, G., Finazzi, V. & Richardson, D. J. Ultra-low-loss optical fiber nanotapers. Optics Express 12, 2258-2263 (2004). doi: 10.1364/OPEX.12.002258
[25] Hoffman, J. E. et al. Ultrahigh transmission optical nanofibers. AIP Advances 4, 067124 (2014). doi: 10.1063/1.4879799
[26] Birks, T. A. & Li, Y. W. The shape of fiber tapers. Journal of Lightwave Technology 10, 432-438 (1992). doi: 10.1109/50.134196
[27] Bilodeau, F. et al. Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure. Journal of Lightwave Technology 6, 1476-1482 (1988). doi: 10.1109/50.7904
[28] Jin, W. et al. Robust microfiber photonic microcells for sensor and device applications. Optics Express 22, 28132-28141 (2014). doi: 10.1364/OE.22.028132
[29] Shi, L. et al. Fabrication of submicron-diameter silica fibers using electric strip heater. Optics Express 14, 5055-5060 (2006). doi: 10.1364/OE.14.005055
[30] Ding, L. et al. Ultralow loss single-mode silica tapers manufactured by a microheater. Applied Optics 49, 2441-2445 (2010). doi: 10.1364/AO.49.002441
[31] Wang, P. et al. Fusion spliced microfiber closed-loop resonators. IEEE Photonics Technology Letters 22, 1075-1077 (2010). doi: 10.1109/LPT.2010.2049646
[32] Sun, L. P. et al. Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing. Optics Letters 39, 3531-3534 (2014). doi: 10.1364/OL.39.003531
[33] Matthews, M. J. et al. Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams. Advanced Engineering Materials 17, 247-252 (2015). doi: 10.1002/adem.201400349
[34] Tong, L. M. et al. Photonic nanowires directly drawn from bulk glasses. Optics Express 14, 82-87 (2006). doi: 10.1364/OPEX.14.000082
[35] Zhang, L. et al. Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates. Microfluidics and Nanofluidics 5, 727-732 (2008). doi: 10.1007/s10404-008-0314-4
[36] Tong, L. M. et al. Self-modulated taper drawing of silica nanowires. Nanotechnology 16, 1445-1448 (2005). doi: 10.1088/0957-4484/16/9/004
[37] Tang, W. W. et al. Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime. Light: Science & Applications 10, 193 (2021).
[38] Thompson, C. V. Solid-state dewetting of thin films. Annual Review of Materials Research 42, 399-434 (2012). doi: 10.1146/annurev-matsci-070511-155048
[39] Vignes, R. M. et al. Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures. Journal of the American Ceramic Society 96, 137-145 (2013). doi: 10.1111/jace.12110
[40] Maier, S. A. Plasmonics: Fundamentals and Applications. (New York: Springer, 2007).
[41] Lu, J. S. et al. Nanoscale lamb wave–driven motors in nonliquid environments. Science Advances 5, eaau8271 (2019). doi: 10.1126/sciadv.aau8271
[42] Li, C. L. et al. Subwavelength silicon photonics for on-chip mode-manipulation. PhotoniX 2, 11 (2021). doi: 10.1186/s43074-021-00032-2
[43] Watkins, A. et al. Single-input spherical microbubble resonator. Optics Letters 36, 2113-2115 (2011). doi: 10.1364/OL.36.002113
[44] Qiu, T. Q. et al. Thermal and mechanical responses of gold films during nanosecond laser-pulse heating. Experimental Heat Transfer 7, 175-188 (1994). doi: 10.1080/08916159408946479
[45] Chen, X. et al. Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6, 2550-2557 (2012). doi: 10.1021/nn2050032
[46] Brygo, F. et al. Laser heating and ablation at high repetition rate in thermal confinement regime. Applied Surface Science 252, 8314-8318 (2006). doi: 10.1016/j.apsusc.2005.11.036
[47] Eaton, S. M. et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Optics Express 13, 4708-4716 (2005). doi: 10.1364/OPEX.13.004708
[48] Chen, J. K. Beraun, J. E. & Tham, C. L. Investigation of thermal response caused by pulse laser heating. Numerical Heat Transfer,Part A: Applications 44, 705-722 (2003). doi: 10.1080/716100520
[49] Holleis, S. et al. Experimental stress–strain analysis of tapered silica optical fibers with nanofiber waist. Applied Physics Letters 104, 163109 (2014). doi: 10.1063/1.4873339
[50] Guo, Z. R. et al. Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 278, 33-38 (2006).