[1] Campbell, M. et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000). doi: 10.1038/35003523
[2] Vorobyev, A. Y. & Guo, C. L. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 7, 385–407 (2013). doi: 10.1002/lpor.201200017
[3] Bonse, J. et al. Laser-induced periodic surface structures—a scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017). doi: 10.1109/JSTQE.2016.2614183
[4] Surdo, S. & Duocastella, M. Fast acoustic light sculpting for on-demand maskless lithography. Adv. Sci. 6, 1900304 (2019). doi: 10.1002/advs.201900304
[5] Zou, T. T. et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light. : Sci. Appl. 9, 69 (2020). doi: 10.1038/s41377-020-0311-2
[6] Abid, M. I. et al. Angle-multiplexed optical printing of biomimetic hierarchical 3D textures. Laser Photonics Rev. 11, 1600187 (2017). doi: 10.1002/lpor.201600187
[7] Ullal, C. K. et al. Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures. Appl. Phys. Lett. 84, 5434–5436 (2004). doi: 10.1063/1.1765734
[8] Maldovan, M. et al. Sub-micrometer scale periodic porous cellular structures: microframes prepared by holographic interference lithography. Adv. Mater. 19, 3809–3813 (2007). doi: 10.1002/adma.200700811
[9] Luo, X. G. & Ishihara, T. Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004). doi: 10.1063/1.1760221
[10] Wang, L. et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light. : Sci. Appl. 6, e17112 (2017). doi: 10.1038/lsa.2017.112
[11] Öktem, B. et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photonics 7, 897–901 (2013). doi: 10.1038/nphoton.2013.272
[12] Rudenko, A., Colombier, J. P. & Itina, T. E. From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser. Phys. Rev. B 93, 075427 (2016). doi: 10.1103/PhysRevB.93.075427
[13] Shimotsuma, Y. et al. Ultrafast manipulation of self-assembled form birefringence in glass. Adv. Mater. 22, 4039–4043 (2010). doi: 10.1002/adma.201000921
[14] Sugioka, K. & Cheng, Y. Ultrafast lasers—reliable tools for advanced materials processing. Light.: Sci. Appl. 3, e149 (2014). doi: 10.1038/lsa.2014.30
[15] Tan, D. Z. et al. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog. Mater. Sci. 76, 154–228 (2016). doi: 10.1016/j.pmatsci.2015.09.002
[16] Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019). doi: 10.1126/science.aax8760
[17] Salter, P. S. & Booth, M. J. Adaptive optics in laser processing. Light. : Sci. Appl. 8, 110 (2019). doi: 10.1038/s41377-019-0215-1
[18] Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. H. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997). doi: 10.1038/386143a0
[19] Turner, M. D. et al. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photonics 7, 801–805 (2013). doi: 10.1038/nphoton.2013.233
[20] Wu, S. L. et al. Manipulating luminescence of light emitters by photonic crystals. Adv. Mater. 30, 1803362 (2018). doi: 10.1002/adma.201803362
[21] Zhang, Q. M. et al. Artificial neural networks enabled by nanophotonics. Light. : Sci. Appl. 8, 42 (2019). doi: 10.1038/s41377-019-0151-0
[22] Krauss, T. F. & De La Rue, R. M. Photonic crystals in the optical regime—past, present and future. Prog. Quantum Electron. 23, 51–96 (1999). doi: 10.1016/S0079-6727(99)00004-X
[23] Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004). doi: 10.1126/science.1096796
[24] Ródenas, A. et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat. Photonics 13, 105–109 (2018). doi: 10.1038/s41566-018-0327-9
[25] Noda, S. et al. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289, 604–606 (2000). doi: 10.1126/science.289.5479.604
[26] Arsenault, A. C. et al. From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat. Mater. 5, 179–184 (2006). doi: 10.1038/nmat1588
[27] MacLeod, J. & Rosei, F. Sustainable sensors from silk. Nat. Mater. 12, 98–100 (2013). doi: 10.1038/nmat3552
[28] Sun, H. B., Matsuo, S. & Misawa, H. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett. 74, 786–788 (1999). doi: 10.1063/1.123367
[29] Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3, 444–447 (2004). doi: 10.1038/nmat1155
[30] Aoki, K. et al. Microassembly of semiconductor three-dimensional photonic crystals. Nat. Mater. 2, 117–121 (2003). doi: 10.1038/nmat802
[31] Birowosuto, M. D. et al. Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform. Nat. Mater. 13, 279–285 (2014). doi: 10.1038/nmat3873
[32] Fleming, J. G. et al. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 417, 52–55 (2002). doi: 10.1038/417052a
[33] Hossain, M. M. & Gu, M. Fabrication methods of 3D periodic metallic nano/microstructures for photonics applications. Laser Photonics Rev. 8, 233–249 (2014). doi: 10.1002/lpor.201300052
[34] Kazansky, P. G. et al. Anomalous anisotropic light scattering in Ge-doped silica glass. Phys. Rev. Lett. 82, 2199–2202 (1999). doi: 10.1103/PhysRevLett.82.2199
[35] Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219–225 (2008). doi: 10.1038/nphoton.2008.47
[36] Lalanne, P. & Lemercier-lalanne, D. On the effective medium theory of subwavelength periodic structures. J. Mod. Opt. 43, 2063–2085 (1996). doi: 10.1080/09500349608232871
[37] Zhang, F. et al. Wavelength response and thermal stability of embedded nanograting structure light attenuator fabricated by direct femtosecond laser writing. Appl. Phys. B. 117, 53–58 (2014). doi: 10.1007/s00340-014-5797-y
[38] Jian, L. & Wayman, C. M. Monoclinic-to-tetragonal phase transformation in a ceramic rare-earth orthoniobate, LaNbO4. J. Am. Ceram. Soc. 80, 803–806 (1997). doi: 10.1111/j.1151-2916.1997.tb02905.x
[39] Vullum, F. et al. Solid solubility and phase transitions in the system LaNb1−xTaxO4. J. Solid State Chem. 181, 2580–2585 (2008). doi: 10.1016/j.jssc.2008.06.032
[40] Zhang, J. Y. et al. Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett. 112, 033901 (2014). doi: 10.1103/PhysRevLett.112.033901
[41] Huang, X. J. et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics 14, 82–88 (2020). doi: 10.1038/s41566-019-0538-8