[1] |
Campbell, M. et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000). doi: 10.1038/35003523 |
[2] |
Vorobyev, A. Y. & Guo, C. L. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 7, 385–407 (2013). doi: 10.1002/lpor.201200017 |
[3] |
Bonse, J. et al. Laser-induced periodic surface structures—a scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017). doi: 10.1109/JSTQE.2016.2614183 |
[4] |
Surdo, S. & Duocastella, M. Fast acoustic light sculpting for on-demand maskless lithography. Adv. Sci. 6, 1900304 (2019). doi: 10.1002/advs.201900304 |
[5] |
Zou, T. T. et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light. : Sci. Appl. 9, 69 (2020). doi: 10.1038/s41377-020-0311-2 |
[6] |
Abid, M. I. et al. Angle-multiplexed optical printing of biomimetic hierarchical 3D textures. Laser Photonics Rev. 11, 1600187 (2017). doi: 10.1002/lpor.201600187 |
[7] |
Ullal, C. K. et al. Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures. Appl. Phys. Lett. 84, 5434–5436 (2004). doi: 10.1063/1.1765734 |
[8] |
Maldovan, M. et al. Sub-micrometer scale periodic porous cellular structures: microframes prepared by holographic interference lithography. Adv. Mater. 19, 3809–3813 (2007). doi: 10.1002/adma.200700811 |
[9] |
Luo, X. G. & Ishihara, T. Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004). doi: 10.1063/1.1760221 |
[10] |
Wang, L. et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light. : Sci. Appl. 6, e17112 (2017). doi: 10.1038/lsa.2017.112 |
[11] |
Öktem, B. et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photonics 7, 897–901 (2013). doi: 10.1038/nphoton.2013.272 |
[12] |
Rudenko, A., Colombier, J. P. & Itina, T. E. From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser. Phys. Rev. B 93, 075427 (2016). doi: 10.1103/PhysRevB.93.075427 |
[13] |
Shimotsuma, Y. et al. Ultrafast manipulation of self-assembled form birefringence in glass. Adv. Mater. 22, 4039–4043 (2010). doi: 10.1002/adma.201000921 |
[14] |
Sugioka, K. & Cheng, Y. Ultrafast lasers—reliable tools for advanced materials processing. Light.: Sci. Appl. 3, e149 (2014). doi: 10.1038/lsa.2014.30 |
[15] |
Tan, D. Z. et al. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog. Mater. Sci. 76, 154–228 (2016). doi: 10.1016/j.pmatsci.2015.09.002 |
[16] |
Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019). doi: 10.1126/science.aax8760 |
[17] |
Salter, P. S. & Booth, M. J. Adaptive optics in laser processing. Light. : Sci. Appl. 8, 110 (2019). doi: 10.1038/s41377-019-0215-1 |
[18] |
Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. H. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997). doi: 10.1038/386143a0 |
[19] |
Turner, M. D. et al. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photonics 7, 801–805 (2013). doi: 10.1038/nphoton.2013.233 |
[20] |
Wu, S. L. et al. Manipulating luminescence of light emitters by photonic crystals. Adv. Mater. 30, 1803362 (2018). doi: 10.1002/adma.201803362 |
[21] |
Zhang, Q. M. et al. Artificial neural networks enabled by nanophotonics. Light. : Sci. Appl. 8, 42 (2019). doi: 10.1038/s41377-019-0151-0 |
[22] |
Krauss, T. F. & De La Rue, R. M. Photonic crystals in the optical regime—past, present and future. Prog. Quantum Electron. 23, 51–96 (1999). doi: 10.1016/S0079-6727(99)00004-X |
[23] |
Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004). doi: 10.1126/science.1096796 |
[24] |
Ródenas, A. et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat. Photonics 13, 105–109 (2018). doi: 10.1038/s41566-018-0327-9 |
[25] |
Noda, S. et al. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289, 604–606 (2000). doi: 10.1126/science.289.5479.604 |
[26] |
Arsenault, A. C. et al. From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat. Mater. 5, 179–184 (2006). doi: 10.1038/nmat1588 |
[27] |
MacLeod, J. & Rosei, F. Sustainable sensors from silk. Nat. Mater. 12, 98–100 (2013). doi: 10.1038/nmat3552 |
[28] |
Sun, H. B., Matsuo, S. & Misawa, H. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett. 74, 786–788 (1999). doi: 10.1063/1.123367 |
[29] |
Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3, 444–447 (2004). doi: 10.1038/nmat1155 |
[30] |
Aoki, K. et al. Microassembly of semiconductor three-dimensional photonic crystals. Nat. Mater. 2, 117–121 (2003). doi: 10.1038/nmat802 |
[31] |
Birowosuto, M. D. et al. Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform. Nat. Mater. 13, 279–285 (2014). doi: 10.1038/nmat3873 |
[32] |
Fleming, J. G. et al. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 417, 52–55 (2002). doi: 10.1038/417052a |
[33] |
Hossain, M. M. & Gu, M. Fabrication methods of 3D periodic metallic nano/microstructures for photonics applications. Laser Photonics Rev. 8, 233–249 (2014). doi: 10.1002/lpor.201300052 |
[34] |
Kazansky, P. G. et al. Anomalous anisotropic light scattering in Ge-doped silica glass. Phys. Rev. Lett. 82, 2199–2202 (1999). doi: 10.1103/PhysRevLett.82.2199 |
[35] |
Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219–225 (2008). doi: 10.1038/nphoton.2008.47 |
[36] |
Lalanne, P. & Lemercier-lalanne, D. On the effective medium theory of subwavelength periodic structures. J. Mod. Opt. 43, 2063–2085 (1996). doi: 10.1080/09500349608232871 |
[37] |
Zhang, F. et al. Wavelength response and thermal stability of embedded nanograting structure light attenuator fabricated by direct femtosecond laser writing. Appl. Phys. B. 117, 53–58 (2014). doi: 10.1007/s00340-014-5797-y |
[38] |
Jian, L. & Wayman, C. M. Monoclinic-to-tetragonal phase transformation in a ceramic rare-earth orthoniobate, LaNbO4. J. Am. Ceram. Soc. 80, 803–806 (1997). doi: 10.1111/j.1151-2916.1997.tb02905.x |
[39] |
Vullum, F. et al. Solid solubility and phase transitions in the system LaNb1−xTaxO4. J. Solid State Chem. 181, 2580–2585 (2008). doi: 10.1016/j.jssc.2008.06.032 |
[40] |
Zhang, J. Y. et al. Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett. 112, 033901 (2014). doi: 10.1103/PhysRevLett.112.033901 |
[41] |
Huang, X. J. et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics 14, 82–88 (2020). doi: 10.1038/s41566-019-0538-8 |