[1] Pawley, J. B. Handbook of Biological Confocal Microscopy. 3rd edn. (Springer-Verlag, New York, 2006).
[2] Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73-76 (1990). doi: 10.1126/science.2321027
[3] Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7, 205-209 (2013). doi: 10.1038/nphoton.2012.336
[4] Huang, D. et al. Optical coherence tomography. Science 254, 1178-1181 (1991). doi: 10.1126/science.1957169
[5] Haeusler, G. & Lindner, M. W. "Coherence radar" and "spectral radar"—new tools for dermatological diagnosis. J. Biomed. Opt. 3, 21-31 (1998). doi: 10.1117/1.429899
[6] Fercher, A. F. et al. Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117, 43-48 (1995). doi: 10.1016/0030-4018(95)00119-S
[7] Santi, P. A. Light sheet fluorescence microscopy: a review. J. Histochem. Cytochem. 59, 129-138 (2011). doi: 10.1369/0022155410394857
[8] Prabhat, P. et al. Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions. IEEE Trans. NanoBiosci. 3, 237-242 (2004). doi: 10.1109/TNB.2004.837899
[9] Johnson, C. et al. Continuous focal translation enhances rate of point-scan volumetric microscopy. Opt. Express 27, 36241-36258 (2019). doi: 10.1364/OE.27.036241
[10] Abrahamsson, S. et al. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nat. Methods 10, 60-63 (2013). doi: 10.1038/nmeth.2277
[11] Bouchard, M. B. et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat. Photonics 9, 113-119 (2015). doi: 10.1038/nphoton.2014.323
[12] Nakano, A. Spinning-disk confocal microscopy—a cutting-edge tool for imaging of membrane traffic. Cell Struct. Funct. 27, 349-355 (2002). doi: 10.1247/csf.27.349
[13] Badon, A. et al. Video-rate large-scale imaging with Multi-Z confocal microscopy. Optica 6, 389-395 (2019). doi: 10.1364/OPTICA.6.000389
[14] Li, H. Y. et al. Fast, volumetric live-cell imaging using high-resolution light-field microscopy. Biomed. Opt. Express 10, 29-49 (2019). doi: 10.1364/BOE.10.000029
[15] Martínez-Corral, M. & Javidi, B. Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems. Adv. Opt. Photonics 10, 512-566 (2018). doi: 10.1364/AOP.10.000512
[16] Song, A. et al. Volumetric two-photon imaging of neurons using stereoscopy (vTwINS). Nat. Methods 14, 420-426 (2017). doi: 10.1038/nmeth.4226
[17] Chen, X. L. et al. Volumetric chemical imaging by stimulated Raman projection microscopy and tomography. Nat. Commun. 8, 15117 (2017). doi: 10.1038/ncomms15117
[18] Lu, R. W. et al. Video-rate volumetric functional imaging of the brain at synaptic resolution. Nat. Neurosci. 20, 620-628 (2017). doi: 10.1038/nn.4516
[19] Pascucci, M. et al. Compressive three-dimensional super-resolution microscopy with speckle-saturated fluorescence excitation. Nat. Commun. 10, 1327 (2019). doi: 10.1038/s41467-019-09297-5
[20] Fang, L. Y. et al. Fast acquisition and reconstruction of optical coherence tomography images via sparse representation. IEEE Trans. Med. Imaging 32, 2034-2049 (2013). doi: 10.1109/TMI.2013.2271904
[21] Wen, C. Y. et al. Compressive sensing for fast 3-D and random-access two-photon microscopy. Opt. Lett. 44, 4343-4346 (2019). doi: 10.1364/OL.44.004343
[22] Beck, A. & Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183-202 (2009). doi: 10.1137/080716542
[23] Boyd, S. et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1-122 (2011). doi: 10.1561/2200000016
[24] de Haan, K. et al. Deep-learning-based image reconstruction and enhancement in optical microscopy. Proc. IEEE 108, 30-50 (2020). doi: 10.1109/JPROC.2019.2949575
[25] Rivenson, Y. et al. Deep learning microscopy. Optica 4, 1437-1443 (2017). doi: 10.1364/OPTICA.4.001437
[26] Wang, H. D. et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods 16, 103-110 (2019). doi: 10.1038/s41592-018-0239-0
[27] Nehme, E. et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 5, 458-464 (2018). doi: 10.1364/OPTICA.5.000458
[28] Rivenson, Y. et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat. Biomed. Eng. 3, 466-477 (2019). doi: 10.1038/s41551-019-0362-y
[29] Bayramoglu, N. et al. Towards virtual H & E staining of hyperspectral lung histology images using conditional generative adversarial networks. In: Proc. 2017 IEEE International Conference on Computer Vision Workshops (ICCVW) 64-71 (IEEE, Venice, Italy, 2017).
[30] Christiansen, E. M. et al. In silico labeling: predicting fluorescent labels in unlabeled images. Cell 173, 792-803. e19 (2018). doi: 10.1016/j.cell.2018.03.040
[31] Ounkomol, C. et al. Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nat. Methods 15, 917-920 (2018). doi: 10.1038/s41592-018-0111-2
[32] Rivenson, Y. et al. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning. Light. : Sci. Appl. 8, 23 (2019). doi: 10.1038/s41377-019-0129-y
[33] Wu, Y. C. et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica 5, 704-710 (2018). doi: 10.1364/OPTICA.5.000704
[34] Rivenson, Y. et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light. : Sci. Appl. 7, 17141 (2018). doi: 10.1038/lsa.2017.141
[35] Nguyen, T. et al. Deep learning approach for Fourier ptychography microscopy. Opt. Express 26, 26470-26484 (2018). doi: 10.1364/OE.26.026470
[36] Pinkard, H. et al. Deep learning for single-shot autofocus microscopy. Optica 6, 794-797 (2019). doi: 10.1364/OPTICA.6.000794
[37] Luo, Y. L. et al. Single-shot autofocusing of microscopy images using deep learning. ACS Photonics 8, 625-638 (2021). doi: 10.1021/acsphotonics.0c01774
[38] Wu, Y. C. et al. Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning. Nat. Methods 16, 1323-1331 (2019). doi: 10.1038/s41592-019-0622-5
[39] Barbastathis, G., Ozcan, A. & Situ, G. On the use of deep learning for computational imaging. Optica 6, 921-943 (2019). doi: 10.1364/OPTICA.6.000921
[40] Choy, C. B. et al. 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Proc. 14th European Conference on Computer Vision (ECCV) 2016. 628-644. (Springer, Amsterdam, The Netherlands, 2016)
[41] Kar, A., Häne, C. & Malik, J. Learning a multi-view stereo machine. In: Proc. 31st International Conference on Neural Information Processing Systems (ACM, Long Beach, CA, USA, 2017).
[42] Petrov, P. N. & Moerner, W. E. Addressing systematic errors in axial distance measurements in single-emitter localization microscopy. Opt. Express 28, 18616-18632 (2020). doi: 10.1364/OE.391496
[43] Montavon, G., Samek, W. & Müller, K. R. Methods for interpreting and understanding deep neural networks. Digital Signal Process. 73, 1-15 (2018). doi: 10.1016/j.dsp.2017.10.011
[44] Selvaraju, R. R. et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proc. 2017 IEEE International Conference on Computer Vision (ICCV). (IEEE, Venice, Italy, 2017).
[45] Çiçek, Ö. et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Proc. 19th International Conference on Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 424-432. (Springer, Athens, Greece, 2016).
[46] Chhetri, R. K. et al. Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat. Methods 12, 1171-1178 (2015). doi: 10.1038/nmeth.3632
[47] Kumar, A. et al. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat. Protoc. 9, 2555-2573 (2014). doi: 10.1038/nprot.2014.172
[48] Wu, Y. C. et al. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat. Biotechnol. 31, 1032-1038 (2013). doi: 10.1038/nbt.2713
[49] Swoger, J. et al. Multi-view image fusion improves resolution in three-dimensional microscopy. Opt. Express 15, 8029-8042 (2007). doi: 10.1364/OE.15.008029
[50] Thevenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27-41 (1998). doi: 10.1109/83.650848
[51] Forster, B. et al. Complex wavelets for extended depth-of-field: a new method for the fusion of multichannel microscopy images. Microsc. Res. Tech. 65, 33-42 (2004). doi: 10.1002/jemt.20092
[52] Shi, X. J. et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Proc. 28th International Conference on Neural Information Processing Systems. (ACM, Montreal, Quebec, Canada, 2015).
[53] Graves, A. et al. A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31, 855-868 (2009). doi: 10.1109/TPAMI.2008.137
[54] Gregor, K. et al. DRAW: a recurrent neural network for image generation. In Proc. 32nd Internnational Conference on Machine Learning 2015. 1462-1471. (PMLR, Lille, France, 2015).
[55] Sharma, A., Grau, O. & Fritz, M. VConv-DAE: deep volumetric shape learning without object labels. In Proc. 14th European Conference on Computer Vision (ECCV) 2016. 236-250. (Springer, Amsterdam, The Netherlands, 2016).
[56] Kingma, D. P. & Welling, M. Auto-encoding variational bayes. Preprint at http://arxiv.org/abs/1312.6114 (2014).
[57] Wang, W. Y. et al. Shape inpainting using 3D generative adversarial network and recurrent convolutional networks. In: Proc. 2017 IEEE International Conference on Computer Vision (ICCV). 2317-2325. (IEEE, Venice, Italy, 2017).
[58] Chen, J. X. et al. Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation. In: Proc. 30th International Conference on Neural Information Processing Systems. (ACM, Barcelona, Spain, 2016).
[59] Tseng, K. L. et al. Joint sequence learning and cross-modality convolution for 3D biomedical segmentation. In: Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3739-3746. (IEEE, Honolulu, HI, 2017).
[60] Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. Preprint at http://arxiv.org/abs/1505.04597 (2015).
[61] Zhou, Z. W. et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39, 1856-1867 (2020). doi: 10.1109/TMI.2019.2959609
[62] Liu, P. J. et al. Multi-level wavelet-CNN for image restoration. In: Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 886-88609. (IEEE, Salt Lake City, UT, USA, 2018).
[63] Cho, K. et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Preprint at http://arxiv.org/abs/1406.1078 (2014).
[64] Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735-1780 (1997). doi: 10.1162/neco.1997.9.8.1735
[65] Owen, A. B. A robust hybrid of lasso and ridge regression. in Prediction and Discovery (eds Verducci, J. S., Shen, X. T. & Lafferty, J. ) 59-71 (American Mathematical Society, Providence, Rhode Island, 2007).
[66] Laina, I. et al. Deeper depth prediction with fully convolutional residual networks. Preprint at http://arxiv.org/abs/1606.00373 (2016).
[67] Wang, Z., Simoncelli, E. P. & Bovik, A. C. Multiscale structural similarity for image quality assessment. In: Proc. 37th Asilomar Conference on Signals, Systems & Computers. (IEEE, Pacific Grove, CA, USA, 2003, 1398-1402).
[68] Goodfellow, I. J. et al. Generative adversarial nets. In: Proc. 27th International Conference on Neural Information Processing Systems. (ACM, Montreal, Quebec, Canada, 2014).
[69] Zhao, H. et al. Loss functions for image restoration with neural networks. IEEE Trans. Computational Imaging 3, 47-57 (2017). doi: 10.1109/TCI.2016.2644865
[70] Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at http://arxiv.org/abs/1412.6980 (2017).