[1] Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 556, 349-354 (2018). doi: 10.1038/s41586-018-0028-z
[2] Zhong, H. S. et al. Quantum computational advantage using photons. Science 370, 1460-1463 (2020). doi: 10.1126/science.abe8770
[3] Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nature Photonics 4, 261-263 (2010). doi: 10.1038/nphoton.2010.94
[4] Wang, Z. et al. On-chip wavefront shaping with dielectric metasurface. Nature Communications 10, 3547 (2019). doi: 10.1038/s41467-019-11578-y
[5] Yang, K. Y. et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nature Communications 13, 7862 (2022). doi: 10.1038/s41467-022-35446-4
[6] Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81-85 (2018). doi: 10.1038/s41586-018-0065-7
[7] Xu, S. F et al. High-order tensor flow processing using integrated photonic circuits. Nature Communications 13, 7970 (2022).
[8] Rickman, A. The commercialization of silicon photonics. Nature Photonics 8, 579-582 (2014). doi: 10.1038/nphoton.2014.175
[9] Zangeneh-Nejad, F. et al. Analogue computing with metamaterials. Nature Reviews Materials 6, 207-225 (2021).
[10] Tang, S. et al. On‐Chip Spiral Waveguides for Ultrasensitive and Rapid Detection of Nanoscale Objects. Advanced Materials 30, 1800262 (2018). doi: 10.1002/adma.201800262
[11] Jin, M. et al. 1/f-noise-free optical sensing with an integrated heterodyne interferometer. Nature Communications 12, 1973 (2021).
[12] Torrijos-Morán, L., Griol, A. & García-Rupérez, J. Slow light bimodal interferometry in one-dimensional photonic crystal waveguides. Light:Science & Applications 10, 16 (2021).
[13] Qiang, X. G. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nature Photonics 12, 534-539 (2018). doi: 10.1038/s41566-018-0236-y
[14] Elshaari, A. W. et al. Hybrid integrated quantum photonic circuits. Nature Photonics 14, 285-298 (2020). doi: 10.1038/s41566-020-0609-x
[15] Gyger, S. et al. Reconfigurable photonics with on-chip single-photon detectors. Nature Communications 12, 1408 (2021). doi: 10.1038/s41467-021-21624-3
[16] Nikolova, D. et al. Scaling silicon photonic switch fabrics for data center interconnection networks. Optics Express 23, 1159-1175 (2015). doi: 10.1364/OE.23.001159
[17] Marchetti, R. et al. High-efficiency grating-couplers: demonstration of a new design strategy. Scientific Reports 7, 16670 (2017). doi: 10.1038/s41598-017-16505-z
[18] Yan, S. Q. et al. Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth. Opto-Electronic Advances 5, 210159 (2022). doi: 10.29026/oea.2022.210159
[19] Sethi, P., Haldar, A. & Selvaraja, S. K. Ultra-compact low-loss broadband waveguide taper in silicon-on-insulator. Optics Express 25, 10196-10203 (2017). doi: 10.1364/OE.25.010196
[20] Chang, T. H. et al. Realization of efficient 3D tapered waveguide-to-fiber couplers on a nanophotonic circuit. Optics Express 30, 31643-31652 (2022). doi: 10.1364/OE.468738
[21] Ren, Z. H. et al. Subwavelength on‐chip light focusing with bigradient all‐dielectric metamaterials for dense photonic integration. InfoMat 4, e12264 (2022).
[22] Suchoski, P. & Ramaswamy, R. Design of single-mode step-tapered waveguide sections. IEEE Journal of Quantum Electronics 23, 205-211 (1987). doi: 10.1109/JQE.1987.1073307
[23] Cai, Y., Mizumoto, T. & Naito, Y. Analysis of the coupling characteristics of a tapered coupled waveguide system. Journal of Lightwave Technology 8, 90-98 (1990). doi: 10.1109/50.45934
[24] Meng, Y. et al. Optical meta-waveguides for integrated photonics and beyond. Light:Science & Applications 10, 235 (2021).
[25] Cheben, P. et al. Subwavelength integrated photonics. Nature 560, 565-572 (2018). doi: 10.1038/s41586-018-0421-7
[26] Ha, Y. L. et al. Monolithic‐Integrated Multiplexed Devices Based on Metasurface‐Driven Guided Waves. Advanced Theory and Simulations 4, 2000239 (2021). doi: 10.1002/adts.202000239
[27] Guo, Y. H. et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light:Science & Applications 10, 63 (2021).
[28] Zhang, Y. X. et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electronic Advances 5, 220058 (2022). doi: 10.29026/oea.2022.220058
[29] Zhang, F. et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nature Communications 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z
[30] Li, Z. Y. et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nature Nanotechnology 12, 675-683 (2017). doi: 10.1038/nnano.2017.50
[31] Xiang, J. et al. Metamaterial-enabled arbitrary on-chip spatial mode manipulation. Light:Science & Applications 11, 168 (2022).
[32] Ren, M.-X. et al. Reconfigurable metasurfaces that enable light polarization control by light. Light:Science & Applications 6, e16254 (2017).
[33] Nguyen, T. M. et al. Reconfigurable broadband metasurfaces with nearly perfect absorption and high efficiency polarization conversion in THz range. Scientific Reports 12, 18779 (2022). doi: 10.1038/s41598-022-23536-8
[34] Chen, Y., Yang, X. D. & Gao, J. Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces. Light:Science & Applications 7, 84 (2018).
[35] Singh, R. et al. Inverse design of photonic meta-structure for beam collimation in on-chip sensing. Scientific Reports 11, 5343 (2021). doi: 10.1038/s41598-021-84841-2
[36] Chen, Z. H. et al. Ultra-compact spot size converter based on digital metamaterials. Optics Communications 508, 127865 (2022). doi: 10.1016/j.optcom.2021.127865
[37] Xu, C. et al. Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications. iScience 25, 103799 (2022). doi: 10.1016/j.isci.2022.103799
[38] Zhou, J. K. et al. Midinfrared Spectroscopic Analysis of Aqueous Mixtures Using Artificial-Intelligence-Enhanced Metamaterial Waveguide Sensing Platform. ACS Nano 17, 711-724 (2023). doi: 10.1021/acsnano.2c10163
[39] Liu, X. M. et al. Progress of optomechanical micro/nano sensors: a review. International Journal of Optomechatronics 15, 120-159 (2021). doi: 10.1080/15599612.2021.1986612
[40] Liu, W. X. et al. Larger-Than-Unity External Optical Field Confinement Enabled by Metamaterial-Assisted Comb Waveguide for Ultrasensitive Long-Wave Infrared Gas Spectroscopy. Nano Letters 22, 6112-6120 (2022). doi: 10.1021/acs.nanolett.2c01198
[41] Liao, K. et al. AI-assisted on-chip nanophotonic convolver based on silicon metasurface. Nanophotonics 9, 3315-3322 (2020).
[42] Ren, Z. H. et al. Leveraging of MEMS Technologies for Optical Metamaterials Applications. Advanced Optical Materials 8, 1900653 (2020). doi: 10.1002/adom.201900653
[43] Fan, Y. L. et al. Integrated 2D-Graded Index Plasmonic Lens on a Silicon Waveguide for Operation in the Near Infrared Domain. ACS Nano 11, 4599-4605 (2017). doi: 10.1021/acsnano.7b00150
[44] Molesky, S. et al. Inverse design in nanophotonics. Nature Photonics 12, 659-670 (2018). doi: 10.1038/s41566-018-0246-9
[45] Krasikov, S. et al. Intelligent metaphotonics empowered by machine learning. Opto-Electronic Advances 5, 210147-210147 (2022). doi: 10.29026/oea.2022.210147
[46] Zheng, Z. H. et al. Towards integrated mode-division demultiplexing spectrometer by deep learning. Opto-Electronic Science 1, 220012 (2022). doi: 10.29026/oes.2022.220012
[47] Ma, T. G. et al. Benchmarking deep learning-based models on nanophotonic inverse design problems. Opto-Electronic Science 1, 210012 (2022). doi: 10.29026/oes.2022.210012
[48] Xu, M. F. et al. Topology-optimized catenary-like metasurface for wide-angle and high-efficiency deflection: from a discrete to continuous geometric phase. Optics Express 29, 10181-10191 (2021). doi: 10.1364/OE.422112
[49] Zheng, Y. H. et al. Designing high-efficiency extended depth-of-focus metalens via topology-shape optimization. Nanophotonics 11, 2967-2975 (2022). doi: 10.1515/nanoph-2022-0183
[50] Xu, M. F. et al. Emerging Long‐Range Order from a Freeform Disordered Metasurface. Advanced Materials 34, 2108709 (2022). doi: 10.1002/adma.202108709
[51] Ha, Y. L. et al. Meta-Optics-Empowered Switchable Integrated Mode Converter Based on the Adjoint Method. Nanomaterials 12, 3395 (2022). doi: 10.3390/nano12193395
[52] Sell, D. et al. Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries. Nano Letters 17, 3752-3757 (2017). doi: 10.1021/acs.nanolett.7b01082
[53] Zhang, J. J. et al. Ultrashort and efficient adiabatic waveguide taper based on thin flat focusing lenses. Optics Express 25, 19894-19903 (2017). doi: 10.1364/OE.25.019894
[54] Sethi, P. & Selvaraja, S. K. Alignment-tolerant broadband compact taper for low-loss coupling to a silicon-on-insulator photonic wire waveguide. Applied Optics 58, 6222-6227 (2019). doi: 10.1364/AO.58.006222
[55] Zhang, J. et al. Polarization-insensitive ultra-short waveguide taper. Optics Letters 46, 5027-5030 (2021). doi: 10.1364/OL.436223
[56] Shi, Y. et al. On-chip meta-optics for semi-transparent screen display in sync with AR projection. Optica 9, 670-676 (2022). doi: 10.1364/OPTICA.456463
[57] Wu, T. et al. Dielectric Metasurfaces for Complete Control of Phase, Amplitude, and Polarization. Advanced Optical Materials 10, 2101223 (2022). doi: 10.1002/adom.202101223
[58] Yu, L. et al. Adoption of large aperture chirped grating antennas in optical phase array for long distance ranging. Optics Express 30, 28112-28120 (2022). doi: 10.1364/OE.464358
[59] Blanche, P.-A. Holography, and the future of 3D display. Light:Advanced Manufacturing 2, 446-459 (2021).
[60] Zhang, J. G. et al. An InP-based vortex beam emitter with monolithically integrated laser. Nature Communications 9, 2652 (2018). doi: 10.1038/s41467-018-05170-z
[61] Wang, J. et al. All-dielectric metasurface grating for on-chip multi-channel orbital angular momentum generation and detection. Optics Express 27, 18794 (2019). doi: 10.1364/OE.27.018794
[62] Bomzon, Z. et al. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters 27, 1141 (2002). doi: 10.1364/OL.27.001141
[63] Hasman, E. et al. Space-variant polarization manipulation. in Progress in Optics vol. 47 215–289 (Elsevier, 2005).
[64] Wang, S. M. et al. A broadband achromatic metalens in the visible. Nature Nanotechnology 13, 227-232 (2018). doi: 10.1038/s41565-017-0052-4
[65] Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology 13, 220-226 (2018). doi: 10.1038/s41565-017-0034-6
[66] Cai, J. X. et al. All-metallic high-efficiency generalized Pancharatnam–Berry phase metasurface with chiral meta-atoms. Nanophotonics 11, 1961-1968 (2022). doi: 10.1515/nanoph-2021-0811
[67] Miller, O. D. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design. (University of California, 2012).
[68] Zheng, Y. Q. et al. Enriching Metasurface Functionalities by Fully Employing the Inter‐Meta‐Atom Degrees of Freedom for Double‐Key‐Secured Encryption. Advanced Materials Technologies 8, 2201468 (2023). doi: 10.1002/admt.202201468