[1] Asghari, M. & Krishnamoorthy, A. V. Silicon photonics: energy-efficient communication. Nat. Photon. 5, 268–270 (2011). doi: 10.1038/nphoton.2011.68
[2] Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016). doi: 10.1088/2040-8978/18/7/073003
[3] Jones, R. et al. Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers. IEEE Nanotechnol. Mag. 13, 17–26 (2019).
[4] Liang, D. et al. Fully-integrated heterogeneous DML transmitters for high-performance computing. J. Lightwave Technol. 38, 3322–3337 (2020). doi: 10.1109/JLT.2019.2959048
[5] Elshaari, A. W. et al. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020). doi: 10.1038/s41566-020-0609-x
[6] Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 556, 349–354 (2018). doi: 10.1038/s41586-018-0028-z
[7] Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015). doi: 10.1038/nature16454
[8] Bowers, J. E. & Liu, A. Y. A comparison of four approaches to photonic integration. Optical Fiber Communications Conference and Exhibition. p. 1–3 (IEEE, 2017).
[9] Liu, A. Y. & Bowers, J. E. Photonic integration with epitaxial Ⅲ-Ⅴ on silicon. IEEE J. Sel. Top. Quant. Electron. 24, 6000412 (2018).
[10] Norman, J. C. et al. Perspective: the future of quantum dot photonic integrated circuits. APL Photon. 3, 030901 (2018). doi: 10.1063/1.5021345
[11] Smit, M., Williams, K. & van der Tol, J. Past, present, and future of InP-based photonic integration. APL Photon. 4, 050901 (2019). doi: 10.1063/1.5087862
[12] Komljenovic, T. et al. Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol. 34, 20–35 (2016). doi: 10.1109/JLT.2015.2465382
[13] Ramirez, J. M. et al. Ⅲ-Ⅴ-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. IEEE J. Sel. Top. Quant. Electron. 26, 6100213 (2020). doi: 10.1109/JSTQE.2019.2939503
[14] Liang, D. & Bowers, J. E. Recent progress in lasers on silicon. Nat. Photon. 4, 511–517 (2010). doi: 10.1038/nphoton.2010.167
[15] Wang, Z. C. et al. Novel light source integration approaches for silicon photonics. Laser Photon. Rev. 11, 1700063 (2017). doi: 10.1002/lpor.201700063
[16] Li, Q. & Lau, K. M. Epitaxial growth of highly mismatched Ⅲ-Ⅴ materials on (001) silicon for electronics and optoelectronics. Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017). doi: 10.1016/j.pcrysgrow.2017.10.001
[17] Chen, S. M. et al. Electrically pumped continuous-wave Ⅲ-Ⅴ quantum dot lasers on silicon. Nat. Photon. 10, 307–311 (2016). doi: 10.1038/nphoton.2016.21
[18] Jung, D. et al. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl. Phys. Lett. 112, 153507 (2018). doi: 10.1063/1.5026147
[19] Xue, Y. et al. 1.55 µm electrically pumped continuous wave lasing of quantum dash lasers grown on silicon. Opt. Express 28, 18172–18179 (2020). doi: 10.1364/OE.392120
[20] Wang, Z. C. et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photon. 9, 837–842 (2015). doi: 10.1038/nphoton.2015.199
[21] Han, Y. et al. Selectively grown Ⅲ-Ⅴ lasers for integrated Si-photonics. J. Lightwave Technol. 39, 940–948 (2021). doi: 10.1109/JLT.2020.3041348
[22] Shi, Y. T. et al. Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer. Optica 4, 1468–1473 (2017). doi: 10.1364/OPTICA.4.001468
[23] Han, Y. et al. Bufferless 1.5 µm Ⅲ-Ⅴ lasers grown on Si-photonics 220 nm silicon-on-insulator platforms. Optica 7, 148–153 (2020). doi: 10.1364/OPTICA.381745
[24] Yan, Z., Han, Y. & Lau, K. M. Multi-heterojunction InAs/GaSb nano-ridges directly grown on (001) Si. Nanotechnology 31, 345707 (2020). doi: 10.1088/1361-6528/ab91f2
[25] Schmid, H. et al. Template-assisted selective epitaxy of Ⅲ-Ⅴ nanoscale devices for co-planar heterogeneous integration with Si. Appl. Phys. Lett. 106, 233101 (2015). doi: 10.1063/1.4921962
[26] Wirths, S. et al. Room-temperature lasing from monolithically integrated GaAs microdisks on silicon. ACS Nano 12, 2169–2175 (2018). doi: 10.1021/acsnano.7b07911
[27] Mauthe, S. et al. High-speed Ⅲ-Ⅴ nanowire photodetector monolithically integrated on Si. Nat. Commun. 11, 4565 (2020). doi: 10.1038/s41467-020-18374-z
[28] Han, Y. & Lau, K. M. Ⅲ-Ⅴ lasers selectively grown on (001) silicon. J. Appl. Phys. 128, 200901 (2020). doi: 10.1063/5.0029804
[29] Metaferia, W. et al. Growth of InP directly on Si by corrugated epitaxial lateral overgrowth. J. Phys. D Appl. Phys. 48, 045102 (2015). doi: 10.1088/0022-3727/48/4/045102
[30] Parillaud, O. et al. High quality InP on Si by conformal growth. Appl. Phys. Lett. 68, 2654–2656 (1996). doi: 10.1063/1.116271
[31] Han, Y., Xue, Y. & Lau, K. M. Selective lateral epitaxy of dislocation-free InP on silicon-on-insulator. Appl. Phys. Lett. 114, 192105 (2019). doi: 10.1063/1.5095457
[32] Han, Y. et al. Micrometer-scale InP selectively grown on SOI for fully integrated Si-photonics. Appl. Phys. Lett. 117, 052102 (2020). doi: 10.1063/5.0015130
[33] Kunert, B. et al. How to control defect formation in monolithic Ⅲ-Ⅴ hetero-epitaxy on (100) Si? A critical review on current approaches. Semicond. Sci. Technol. 33, 093002 (2018). doi: 10.1088/1361-6641/aad655
[34] Paladugu, M. et al. Site selective integration of Ⅲ-Ⅴ materials on Si for nanoscale logic and photonic devices. Cryst. Growth Des. 12, 4696–4702 (2012). doi: 10.1021/cg300779v
[35] Jiang, S. et al. Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches. J. Appl. Phys. 115, 023517 (2014). doi: 10.1063/1.4861416
[36] Eaton, S. W. et al. Semiconductor nanowire lasers. Nat. Rev. Mater. 1, 16028 (2016). doi: 10.1038/natrevmats.2016.28
[37] Fujii, T. et al. Multiwavelength membrane laser array using selective area growth on directly bonded InP on SiO2/Si. Optica 7, 838–846 (2020). doi: 10.1364/OPTICA.391700
[38] Xue, Y. et al. Bufferless Ⅲ-Ⅴ photodetectors directly grown on (001) silicon-on-insulators. Opt. Lett. 45, 1754–1757 (2020). doi: 10.1364/OL.387702
[39] Hu, Y. T. et al. Ⅲ-Ⅴ-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template. Light. Sci. Appl. 8, 93 (2019). doi: 10.1038/s41377-019-0202-6
[40] Jiao, Y. Q. et al. InP membrane integrated photonics research. Semicond. Sci. Technol. 36, 013001 (2020). doi: 10.1088/1361-6641/abcadd