[1] Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516-521 (2015). doi: 10.1126/science.1261243
[2] Northup, T. E. & Blatt, R. Quantum information transfer using photons. Nat. Photonics 8, 356-363 (2014). doi: 10.1038/nphoton.2014.53
[3] Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143-149 (1997). doi: 10.1038/386143a0
[4] Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77-79 (2001). doi: 10.1126/science.1058847
[5] Maccaferri, N. et al. Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2D magnetoplasmonic crystals. ACS Photonics 2, 1769-1779 (2015). doi: 10.1021/acsphotonics.5b00490
[6] Chen, J. et al. Plasmonic nickel nanoantennas. Small 7, 2341-2347 (2011). doi: 10.1002/smll.201100640
[7] Bonanni, V. et al. Designer magnetoplasmonics with nickel nanoferromagnets. Nano Lett. 11, 5333-5338 (2011). doi: 10.1021/nl2028443
[8] Lodewijks, K. et al. Magnetoplasmonic design rules for active magneto-optics. Nano Lett. 14, 7207-7214 (2014). doi: 10.1021/nl504166n
[9] Berger, A. et al. Enhanced magneto-optical edge excitation in nanoscale magnetic disks. Phys. Rev. Lett. 115, 187403 (2015). doi: 10.1103/PhysRevLett.115.187403
[10] Maccaferri, N. et al. Anisotropic nanoantenna-based magnetoplasmonic crystals for highly enhanced and tunable magneto-optical activity. Nano Lett. 16, 2533-2542 (2016). doi: 10.1021/acs.nanolett.6b00084
[11] Maccaferri, N. et al. Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nat. Commun. 6, 6150 (2015). doi: 10.1038/ncomms7150
[12] Valev, V. K. et al. Plasmons reveal the direction of magnetization in nickel nanostructures. ACS Nano 5, 91-96 (2011). doi: 10.1021/nn102852b
[13] González-Díaz, J. B. et al. Plasmonic Au/Co/Au Nanosandwiches with Enhanced Magneto-optical Activity. Small 4, 202-205 (2008). doi: 10.1002/smll.200700594
[14] Banthí, J. C. et al. High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks. Adv Mater 24, OP36-OP41 (2012). doi: 10.1002/adma.201290058
[15] Chin, J. Y. et al. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nat. Commun. 4, 1599 (2013). doi: 10.1038/ncomms2609
[16] Belotelov, V. I. et al. Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat. Nanotechnol. 6, 370-376 (2011). doi: 10.1038/nnano.2011.54
[17] Wang, L. et al. Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles. Nano Lett. 11, 1237-1240 (2011). doi: 10.1021/nl1042243
[18] López-Ortega, A., Takahashi, M., Maenosono, S. & Vavassori, P. Plasmon induced magneto-optical enhancement in metallic Ag/FeCo core/shell nanoparticles synthesized by colloidal chemistry. Nanoscale 10, 18672-18679 (2018). doi: 10.1039/C8NR03201G
[19] Armelles, G., Cebollada, A., García-Martín, A. & González, M. U. Magnetoplasmonics: combining magnetic and plasmonic functionalities. Adv. Opt. Mater. 1, 10-35 (2013). doi: 10.1002/adom.201200011
[20] Maksymov, I. S. Magneto-plasmonic nanoantennas: basics and applications. Rev. Phys. 1, 36-51 (2016). doi: 10.1016/j.revip.2016.03.002
[21] Floess, D., Weiss, T., Tikhodeev, S. & Giessen, H. Lorentz nonreciprocal model for hybrid magnetoplasmonics. Phys. Rev. Lett. 117, 063901 (2016). doi: 10.1103/PhysRevLett.117.063901
[22] Floess, D. et al. Plasmonic analog of electromagnetically induced absorption leads to giant thin film faraday rotation of 14°. Phys. Rev. X 7, 021048 (2017). doi: 10.1103/PhysRevX.7.021048
[23] Uchida, H., Masuda, Y., Fujikawa, R., Baryshev, A. V. & Inoue, M. Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi:YIG film. J. Magn. Magn. Mater. 321, 843-845 (2009). doi: 10.1016/j.jmmm.2008.11.064
[24] Temnov, V. V. et al. Active magneto-plasmonics in hybrid metal-ferromagnet structures. Nat. Photonics 4, 107-111 (2010). doi: 10.1038/nphoton.2009.265
[25] Ferreiro-Vila, E., García-Martín, J. M., Cebollada, A., Armelles, G. & González, M. U. Magnetic modulation of surface plasmon modes in magnetoplasmonic metal-insulator-metal cavities. Opt. Express 21, 4917 (2013). doi: 10.1364/OE.21.004917
[26] Zubritskaya, I., Maccaferri, N., Inchausti Ezeiza, X., Vavassori, P. & Dmitriev, A. Magnetic control of the chiroptical plasmonic surfaces. Nano Lett. 18, 302-307 (2018). doi: 10.1021/acs.nanolett.7b04139
[27] Armelles, G. et al. Interaction effects between magnetic and chiral building blocks: a new route for tunable magneto-chiral plasmonic structures. ACS Photonics 2, 1272-1277 (2015). doi: 10.1021/acsphotonics.5b00158
[28] Armelles, G. et al. Magnetic field modulation of chirooptical effects in magnetoplasmonic structures. Nanoscale 6, 3737 (2014). doi: 10.1039/c3nr05889a
[29] Feng, H. Y., de Dios, C., García, F., Cebollada, A. & Armelles, G. Analysis and magnetic modulation of chiro-optical properties in anisotropic chiral and magneto-chiral plasmonic systems. Opt. Express 25, 31045 (2017). doi: 10.1364/OE.25.031045
[30] Zubritskaya, I. et al. Active magnetoplasmonic ruler. Nano Lett. 15, 3204-3211 (2015). doi: 10.1021/acs.nanolett.5b00372
[31] Pourjamal, S., Kataja, M., Maccaferri, N., Vavassori, P. & van Dijken, S. Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing. Nanophotonics 7, 905-912 (2018). doi: 10.1515/nanoph-2018-0013
[32] Sepúlveda, B., Calle, A., Lechuga, L. M. & Armelles, G. Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor. Opt. Lett. 31, 1085 (2006). doi: 10.1364/OL.31.001085
[33] Regatos, D., Sepúlveda, B., Fariña, D., Carrascosa, L. G. & Lechuga, L. M. Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing. Opt. Express 19, 8336 (2011). doi: 10.1364/OE.19.008336
[34] Caballero, B., García-Martín, A. & Cuevas, J. C. Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors. ACS Photonics 3, 203-208 (2016). doi: 10.1021/acsphotonics.5b00658
[35] Ahmadivand, A. et al. Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors. ACS Sens. 2, 1359-1368 (2017). doi: 10.1021/acssensors.7b00478
[36] Maccaferri, N. et al. Tuning the magneto-optical response of nanosize ferromagnetic ni disks using the phase of localized plasmons. Phys. Rev. Lett. 111, 167401 (2013). doi: 10.1103/PhysRevLett.111.167401
[37] Klar, T. et al. Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett. 80, 4249-4252 (1998). doi: 10.1103/PhysRevLett.80.4249
[38] Armelles, G. et al. Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties. J. Opt. A Pure Appl Opt. 11, 114023 (2009). doi: 10.1088/1464-4258/11/11/114023
[39] Armelles, G. et al. Mimicking electromagnetically induced transparency in the magneto-optical activity of magnetoplasmonic nanoresonators. Opt. Express 21, 27356 (2013). doi: 10.1364/OE.21.027356
[40] de Sousa, N. et al. Interaction effects on the magneto-optical response of magnetoplasmonic dimers. Phys. Rev. B 89, 205419 (2014). doi: 10.1103/PhysRevB.89.205419
[41] Pourjamal, S., Kataja, M., Maccaferri, N., Vavassori, P. & van Dijken, S. Tunable magnetoplasmonics in lattices of Ni/SiO2/Au dimers. Sci. Rep. 9, 9907 (2019). doi: 10.1038/s41598-019-46058-2
[42] Feng, H. Y. et al. Active magnetoplasmonic split-ring/ring nanoantennas. Nanoscale 9, 37-44 (2017). doi: 10.1039/C6NR07864H
[43] Sonnefraud, Y. et al. Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4, 1664-1670 (2010). doi: 10.1021/nn901580r
[44] Hao, F. et al. Symmetry breaking in plasmonic nanocavities: subradiant lspr sensing and a tunable fano resonance. Nano Lett. 8, 3983-3988 (2008). doi: 10.1021/nl802509r
[45] Hao, F., Larsson, E. M., Ali, T. A., Sutherland, D. S. & Nordlander, P. Shedding light on dark plasmons in gold nanorings. Chem. Phys. Lett. 458, 262-266 (2008). doi: 10.1016/j.cplett.2008.04.126
[46] Large, N. et al. Plasmonic properties of gold ring-disk nano-resonators: fine shape details matter. Opt. Express 19, 5587 (2011). doi: 10.1364/OE.19.005587
[47] Hao, F., Nordlander, P., Burnett, M. T. & Maier, S. A. Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities. Phys. Rev. B 76, 245417 (2007). doi: 10.1103/PhysRevB.76.245417
[48] Chu, M.-W. et al. Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. Nano Lett. 9, 399-404 (2009). doi: 10.1021/nl803270x
[49] Yan, W., Faggiani, R. & Lalanne, P. Rigorous modal analysis of plasmonic nanoresonators. Phys. Rev. B 97, 205422 (2018). doi: 10.1103/PhysRevB.97.205422
[50] Du, J. et al. Optical beam steering based on the symmetry of resonant modes of nanoparticles. Phys. Rev. Lett. 106, 203903 (2011). doi: 10.1103/PhysRevLett.106.203903
[51] Du, J., Lin, Z., Chui, S. T., Dong, G. & Zhang, W. Nearly total omnidirectional reflection by a single layer of nanorods. Phys. Rev. Lett. 110, 163902 (2013). doi: 10.1103/PhysRevLett.110.163902
[52] Ra'di, Y., Sounas, D. L. & Alù, A. Metagratings: beyond the limits of graded metasurfaces for wave front control. Phys. Rev. Lett. 119, 067404 (2017). doi: 10.1103/PhysRevLett.119.067404
[53] Vavassori, P. Polarization modulation technique for magneto-optical quantitative vector magnetometry. Appl. Phys Lett. 77, 1605 (2000). doi: 10.1063/1.1310169
[54] COMSOL. COMSOL Multyphisics v. 5.2, AB, Stockholm, Sweden. http://www.comsol.com.
[55] Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370-4379 (1972). doi: 10.1103/PhysRevB.6.4370
[56] Višňovský, Š. et al. Magneto-optical Kerr spectra of nickel. J. Magn. Magn. Mater. 127, 135-139 (1993). doi: 10.1016/0304-8853(93)90206-H