[1] |
Das, S. & Subudhi, S. A review on different methodologies to study thermal comfort. International Journal of Environmental Science and Technology 19, 2155-2171 (2022). doi: 10.1007/s13762-021-03210-8 |
[2] |
Uyanna, O. & Najafi, H. Thermal protection systems for space vehicles: a review on technology development, current challenges and future prospects. Acta Astronautica 176, 341-356 (2020). doi: 10.1016/j.actaastro.2020.06.047 |
[3] |
Ilic, O. et al. Tailoring high-temperature radiation and the resurrection of the incandescent source. Nature Nanotechnology 11, 320-324 (2016). doi: 10.1038/nnano.2015.309 |
[4] |
Carballo-Leyenda, B. et al. Wildland firefighters’ thermal exposure in relation to suppression tasks. International Journal of Wildland Fire 30, 475-483 (2021). doi: 10.1071/WF20076 |
[5] |
Su, Y. et al. Development of a numerical model to predict physiological strain of firefighter in fire hazard. Scientific Reports 8, 3628 (2018). doi: 10.1038/s41598-018-22072-8 |
[6] |
Agostinelli, P. J. et al. Validity of heart rate derived core temperature estimation during simulated firefighting tasks. Scientific Reports 13, 22503 (2023). doi: 10.1038/s41598-023-49929-x |
[7] |
Acharya, J., Bhanja, D. & Dev Misra, R. Prediction of safe zone for firefighters exposed to purely radiant heat source-a numerical analysis. International Journal of Thermal Sciences 190, 108302 (2023). doi: 10.1016/j.ijthermalsci.2023.108302 |
[8] |
Wang, L. J. et al. Developing smart fabric systems with shape memory layer for improved thermal protection and thermal comfort. Materials & Design 221, 110922 (2022). |
[9] |
Bartkowiak, G., Dąbrowska, A. & Greszta, A. Development of smart textile materials with shape memory alloys for application in protective clothing. Materials 13, 689 (2020). doi: 10.3390/ma13030689 |
[10] |
Peng, Y. C. et al. Coloured low-emissivity films for building envelopes for year-round energy savings. Nature Sustainability 5, 339-347 (2022). |
[11] |
Nie, S. et al. Soft, stretchable thermal protective substrates for wearable electronics. npj Flexible Electronics 6, 36 (2022). doi: 10.1038/s41528-022-00174-8 |
[12] |
Jung, Y. et al. Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Letters 15, 160 (2023). doi: 10.1007/s40820-023-01126-1 |
[13] |
Yu, J. B. et al. Asymmetric directional control of thermal emission. Advanced Materials 35, 2302478 (2023). doi: 10.1002/adma.202302478 |
[14] |
Liu, T. J. et al. Thermal photonics with broken symmetries. eLight 2, 25 (2022). doi: 10.1186/s43593-022-00025-z |
[15] |
Qin, B. et al. Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light: Science & Applications 12, 246 (2023). |
[16] |
Lin, K. T. et al. Highly efficient flexible structured metasurface by roll-to-roll printing for diurnal radiative cooling. eLight 3, 22 (2023). doi: 10.1186/s43593-023-00053-3 |
[17] |
Sun, Y. Y., Wilson, R. & Wu, Y. P. A review of transparent insulation material (TIM) for building energy saving and daylight comfort. Applied Energy 226, 713-729 (2018). doi: 10.1016/j.apenergy.2018.05.094 |
[18] |
Ming, Y. et al. Optical evaluation of a smart transparent insulation material for window application. Energy Conversion and Management: X 16, 100315 (2022). doi: 10.1016/j.ecmx.2022.100315 |
[19] |
Cao, C. F. et al. Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning. Nano-Micro Letters 14, 92 (2022). doi: 10.1007/s40820-022-00837-1 |
[20] |
Xue, T. T. et al. Fast and scalable production of crosslinked polyimide aerogel fibers for ultrathin thermoregulating clothes. Nature Communications 14, 8378 (2023). doi: 10.1038/s41467-023-43663-8 |
[21] |
Leung, E. M. et al. A dynamic thermoregulatory material inspired by squid skin. Nature Communications 10, 1947 (2019). doi: 10.1038/s41467-019-09589-w |
[22] |
Gupta, N. & Tiwari, G. N. Review of passive heating/cooling systems of buildings. Energy Science & Engineering 4, 305-333 (2016). |
[23] |
Frydrych, I. et al. Comparative analysis of the thermal insulation of traditional and newly designed protective clothing for foundry workers. Polymers 8, 348 (2016). doi: 10.3390/polym8100348 |
[24] |
Chou, C. et al. Physiological strains of wearing aluminized and non-aluminized firefighters' protective clothing during exercise in radiant heat. Industrial Health 49, 185-194 (2011). doi: 10.2486/indhealth.MS1034 |
[25] |
Liu, S. et al. Mask-inspired moisture-transmitting and durable thermochromic perovskite smart windows. Nature Communications 15, 876 (2024). doi: 10.1038/s41467-024-45047-y |
[26] |
Zhou, J. W. et al. Angle-selective thermal emitter for directional radiative cooling and heating. Joule 7, 2830-2844 (2023). doi: 10.1016/j.joule.2023.10.013 |
[27] |
Ying, Y. B. et al. Directional thermal emission covering two atmospheric windows. Laser & Photonics Reviews 17, 2300407 (2023). |
[28] |
Cho, J. W. et al. Directional radiative cooling via exceptional epsilon-based microcavities. ACS Nano 17, 10442-10451 (2023). doi: 10.1021/acsnano.3c01184 |
[29] |
Xu, J., Mandal, J. & Raman, A. P. Broadband directional control of thermal emission. Science 372, 393-397 (2021 doi: 10.1126/science.abc5381 |
[30] |
Liu, M. Q. et al. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films. Nature Materials 22, 1196-1202 (2023). doi: 10.1038/s41563-023-01635-9 |
[31] |
Saha, S. et al. Tailoring the thickness-dependent optical properties of conducting nitrides and oxides for epsilon-near-zero-enhanced photonic applications. Advanced Materials 35, 2109546 (2023). doi: 10.1002/adma.202109546 |
[32] |
Ying, Y. B. et al. Whole LWIR directional thermal emission based on ENZ thin films. Laser & Photonics Reviews 16, 2200018 (2022). |
[33] |
Nordin, L. et al. Mid-infrared epsilon-near-zero modes in ultra-thin phononic films. Applied Physics Letters 111, 091105 (2017). doi: 10.1063/1.4996213 |
[34] |
Cheng, Y. T. & Cheng, C. M. Relationships between hardness, elastic modulus, and the work of indentation. Applied Physics Letters 73, 614-616 (1998). doi: 10.1063/1.121873 |
[35] |
Maurya, A. K. et al. Effect of radiant heat exposure on structure and mechanical properties of thermal protective fabrics. Polymer 222, 123634 (2021). doi: 10.1016/j.polymer.2021.123634 |
[36] |
Zhou, J. Y. et al. Advanced functional Kevlar composite with excellent mechanical properties for thermal management and intelligent safeguarding. Chemical Engineering Journal 428, 131878 (2022 doi: 10.1016/j.cej.2021.131878 |
[37] |
Ao, X. Z. et al. Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the sun and outer space. Proceedings of the National Academy of Sciences of the United States of America 19, e2120557119 (2022). |
[38] |
Lee, M. et al. Photonic structures in radiative cooling. Light: Science & Applications 12, 134 (2023). |
[39] |
Wu, X. K. et al. An all-weather radiative human body cooling textile. Nature Sustainability 6, 1446-1454 (2023). doi: 10.1038/s41893-023-01200-x |
[40] |
Zhu, Y. N. et al. Night-time radiative warming using the atmosphere. Light: Science & Applications 12, 268 (2023). |
[41] |
Li, D. et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nature Nanotechnology 16, 153-158 (2021). doi: 10.1038/s41565-020-00800-4 |
[42] |
Kang, M. H. et al. Outdoor-useable, wireless/battery-free patch-type tissue oximeter with radiative cooling. Advanced Science 8, 2004885 (2021). doi: 10.1002/advs.202004885 |
[43] |
Xie, F. et al. Subambient daytime radiative cooling of vertical surfaces. Science 386, 788-794 (2024). doi: 10.1126/science.adn2524 |
[44] |
Qin, B. et al. Space-to-ground infrared camouflage with radiative heat dissipation. Light: Science & Applications, 14, 137 (2025). |
[45] |
Zhao, M. et al. High-temperature stealth across multi-infrared and microwave bands with efficient radiative thermal management. Nano-Micro Letters 17, 199 (2025). doi: 10.1007/s40820-025-01712-5 |
[46] |
So, S. et al. Radiative cooling for energy sustainability: from fundamentals to fabrication methods toward commercialization. Advanced Science 11, 2305067 (2024). doi: 10.1002/advs.202305067 |
[47] |
Liu, P. F. et al. Functional radiative cooling: basic concepts, materials, and best practices in measurements. ACS Applied Electronic Materials 5, 5755-5776 (2023). doi: 10.1021/acsaelm.3c01023 |
[48] |
Khurgin, J. et al. Hot-electron dynamics in plasmonic nanostructures: fundamentals, applications and overlooked aspects. eLight 4, 15 (2024). doi: 10.1186/s43593-024-00070-w |
[49] |
Ergoktas, M. S. et al. Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nature Photonics 15, 493-498 (2021). doi: 10.1038/s41566-021-00791-1 |
[50] |
Quan, C. et al. A Non-volatile switchable infrared stealth metafilm with GST. Light: Advanced Manufacturing 6, 142-151 (2025). |
[51] |
Huang, Y. et al. Hierarchical visible-infrared-microwave scattering surfaces for multispectral camouflage. Nanophotonics 11, 3613-3622 (2022). doi: 10.1515/nanoph-2022-0254 |
[52] |
Xu, Z. Q. et al. Spatially resolved dynamically reconfigurable multilevel control of thermal emission. Laser & Photonics Reviews 14, 1900162 (2020). |
[53] |
Ma, Y. et al. Broadband unidirectional thermal emission. Laser & Photonics Reviews 19, 2400716 (2024). |
[54] |
Heo, S. Y. et al. A Janus emitter for passive heat release from enclosures. Science Advances 6, eabb1906 (2020). doi: 10.1126/sciadv.abb1906 |
[55] |
Xu, Z. Q. et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting. Nano Letters 21, 5269-5276 (2021). doi: 10.1021/acs.nanolett.1c01396 |
[56] |
Youngblood, N. et al. Reconfigurable low-emissivity optical coating using ultrathin phase change materials. ACS Photonics 9, 90-100 (2022). |