[1] Arora, K. et al. Ultrahigh performance of self-powered β-Ga2O3 thin film solar-blind photodetector grown on cost-effective si substrate using high-temperature seed layer. ACS Photonics 5, 2391-2401 (2018). doi: 10.1021/acsphotonics.8b00174
[2] Arora, K. & Kumar, M. Sputtered-growth of high-temperature seed-layer assisted β-Ga2O3 thin film on silicon-substrate for cost-effective solar-blind photodetector application. ECS J. Solid State Sci. Technol. 9, 065013 (2020). doi: 10.1149/2162-8777/aba7fd
[3] Kumar, N., Arora, K. & Kumar, M. High performance, flexible and room temperature grown amorphous Ga2O3 solar-blind photodetector with amorphous indium-zinc-oxide transparent conducting electrodes. J. Phys. D 52, 335103 (2019). doi: 10.1088/1361-6463/ab236f
[4] Dehzangi, A. et al. Type-II superlattices base visible/extended short-wavelength infrared photodetectors with a bandstructure-engineered photo-generated carrier extractor. Sci. Rep. 9, 5003 (2019). doi: 10.1038/s41598-019-41494-6
[5] Wu, D. H. et al. Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice. AIP Adv. 10, 025018 (2020). doi: 10.1063/1.5136501
[6] Bianconi, S. & Mohseni, H. Recent advances in infrared imagers: toward thermodynamic and quantum limits of photon sensitivity. Rep. Prog. Phys. 83, 044101 (2020). doi: 10.1088/1361-6633/ab72e5
[7] Arora, K. et al. Spectrally selective and highly sensitive UV photodetection with UV-A, C band specific polarity switching in silver plasmonic nanoparticle enhanced gallium oxide thin-film. Adv. Opt. Mater. 8, 2000212 (2020). doi: 10.1002/adom.202000212
[8] Haddadi, A. et al. Background-limited long wavelength infrared InAs/InAs1-xSbx type-II superlattice-based photodetectors operating at 110 K. APL Mater. 5, 035502 (2017). doi: 10.1063/1.4975619
[9] Beck, J. et al. The HgCdTe electron avalanche photodiode. J. Electron. Mater. 35, 1166-1173 (2006). doi: 10.1007/s11664-006-0237-3
[10] Vaidyanathan, M. et al. High performance ladar focal plane arrays for 3D range imaging. In Proc. 2004 IEEE Aerospace Conference Proceedings. Big Sky, MT (IEEE, USA, 2004).
[11] Razeghi, M. Technology of Quantum Devices (Springer, Boston, MA, 2010).
[12] Rogalski, A. Infrared detectors: status and trends. Prog. Quantum Electron. 27, 59-210 (2003). doi: 10.1016/S0079-6727(02)00024-1
[13] Liu, C. H. et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9, 273-278 (2014). doi: 10.1038/nnano.2014.31
[14] Zhang, B. Y. et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013). doi: 10.1038/ncomms2830
[15] Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). doi: 10.1126/science.1156965
[16] Echtermeyer, T. J. et al. Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2, 458 (2011). doi: 10.1038/ncomms1464
[17] Plötzing, T. et al. Experimental verification of carrier multiplication in graphene. Nano Lett. 14, 5371-5375 (2014). doi: 10.1021/nl502114w
[18] Guo, Q. S. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 16, 4648-4655 (2016). doi: 10.1021/acs.nanolett.6b01977
[19] Bullock, J. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 12, 601-607 (2018). doi: 10.1038/s41566-018-0239-8
[20] Chen, X. L. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 8, 1672 (2017). doi: 10.1038/s41467-017-01978-3
[21] Liu, B. L. et al. Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27, 4423-4429 (2015). doi: 10.1002/adma.201501758
[22] Long, M. S. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3, e1700589 (2017). doi: 10.1126/sciadv.1700589
[23] Island, J. O. et al. Environmental instability of few-layer black phosphorus. 2D Mater. 2, 011002 (2015). doi: 10.1088/2053-1583/2/1/011002
[24] Yu, X. C. et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun. 9, 1545 (2018). doi: 10.1038/s41467-018-03935-0
[25] Long, M. S. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13, 2511-2519 (2019). http://www.ncbi.nlm.nih.gov/pubmed/30714726
[26] Long, M. S. et al. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29, 1803807 (2019). doi: 10.1002/adfm.201803807
[27] Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780-793 (2014). doi: 10.1038/nnano.2014.215
[28] Konstantatos, G. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 9, 5266 (2018). doi: 10.1038/s41467-018-07643-7
[29] Campbell, J. C. & Ogawa, K. Heterojunction phototransistors for long‐wavelength optical receivers. J. Appl. Phys. 53, 1203-1208 (1982). doi: 10.1063/1.330570
[30] Kroemer, H. Heterostructure bipolar transistors and integrated circuits. Proc. IEEE 70, 13-25 (1982). doi: 10.1109/PROC.1982.12226
[31] Feng, M., Holonyak, N. Jr. & Hafez, W. Light-emitting transistor: light emission from InGaP/GaAs heterojunction bipolar transistors. Appl. Phys. Lett. 84, 151-153 (2004). doi: 10.1063/1.1637950
[32] Livingston, H. A survey of heterojunction bipolar transistor (HBT) device reliability. IEEE Trans. Compon. Packag. Technol. 27, 225-228 (2004). doi: 10.1109/TCAPT.2004.827642
[33] Ozkan, C. S. & Salmi, A. Heterojunction bipolar transistor (HBT) fabrication using a selectively deposited silicon germanium (SiGe). U.S. Patent No. 6, 531, 369 (2003).
[34] Pei, Z. et al. A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor. IEEE Electron. Device Lett. 24, 643-645 (2003). doi: 10.1109/LED.2003.817870
[35] Rezaei, M. et al. InGaAs based heterojunction phototransistors: viable solution for high-speed and low-noise short wave infrared imaging. Appl. Phys. Lett. 114, 161101 (2019). doi: 10.1063/1.5091052
[36] Capasso, F. et al. New graded band‐gap picosecond phototransistor. Appl. Phys. Lett. 42, 93-95 (1983). doi: 10.1063/1.93739
[37] Leu, L. Y., Gardner, J. T. & Forrest, S. R. A high‐gain, high‐bandwidth In0.53Ga0.47As/InP heterojunction phototransistor for optical communications. J. Appl. Phys. 69, 1052-1062 (1991). doi: 10.1063/1.347371
[38] Haddadi, A. et al. Mid-wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb superlattices. Appl. Phys. Lett. 109, 021107 (2016). doi: 10.1063/1.4958715
[39] Dehzangi, A. et al. Extended short wavelength infrared heterojunction phototransistors based on type II superlattices. Appl. Phys. Lett. 114, 191109 (2019). doi: 10.1063/1.5093560
[40] Sai‐Halasz, G. A., Tsu, R. & Esaki, L. A new semiconductor superlattice. Appl. Phys. Lett. 30, 651-653 (1977). doi: 10.1063/1.89273
[41] Razeghi, M. Focal Plane Arrays In Type II-superlattices (2005).
[42] Nguyen, B. M. et al. Growth and characterization of long-wavelength infrared type-II superlattice photodiodes on a 3-in GaSb wafer. IEEE J. Quantum Electron. 47, 686-690 (2011). doi: 10.1109/JQE.2010.2103049
[43] Hoang, A. M. et al. High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices. Sci. Rep. 6, 24144 (2016). doi: 10.1038/srep24144
[44] Haddadi, A. et al. InAs/InAs1-xSbx type-II superlattices for high performance long wavelength infrared detection. Appl. Phys. Lett. 12, 121104 (2014). doi: 10.1063/1.4896271
[45] Haddadi, A. et al. High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1-xSbx superlattices. Appl. Phys. Lett. 107, 141104 (2015). doi: 10.1063/1.4932518
[46] Wei, Y. J. et al. High quality type II InAs/GaSb superlattices with cutoff wavelength ~3.7 μm using interface engineering. J. Appl. Phys. 94, 4720-4722 (2003). doi: 10.1063/1.1606506
[47] Wei, Y. J. et al. Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 μm. Appl. Phys. Lett. 81, 3675-3677 (2002). doi: 10.1063/1.1520699
[48] Hoang, A. M. et al. Demonstration of shortwavelength infrared photodiodes based on type-II InAs/GaSb/AlSb superlattices. Appl. Phys. Lett. 100, 211101 (2012). doi: 10.1063/1.4720094
[49] Campbell, J. et al. InP/InGaAs heterojunction phototransistors. IEEE J. Quantum Electronics 17, 264-269 (1981). doi: 10.1109/JQE.1981.1071072
[50] Stillman, G. E. Optoelectronics. In Reference Data for Engineers 9th edn. (eds Middleton, W. M. & Van Valkenburg, M. E. ). 21-1-21-31 (Newnes, Woburn, 2002).
[51] Razeghi, M. Fundamentals of Solid State Engineering (Boston, MA: Springer, 2006).
[52] Haddadi, A. et al. Bias-selectable nBn dual-band long-/very long-wavelength infrared photodetectors based on InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices. Sci. Rep. 7, 3379 (2017). doi: 10.1038/s41598-017-03238-2
[53] Kelly, M. et al. Design and testing of an all-digital readout integrated circuit for infrared focal plane arrays. In Proc. SPIE 5902, Focal Plane Arrays for Space Telescopes II (SPIE, San Diego, USA, 2005).
[54] Khoshakhlagh, A. Design of a Readout Integrated Circuit (ROIC) for Infrared Imaging Applications. MSc thesis (University of New Mexico, New Mexico, 2010).
[55] Hu, G. et al. CMOS pixel sensor development: a fast read-out architecture with integrated zero suppression. J. Instrum. 4, 04012 (2009). doi: 10.1088/1748-0221/4/04/P04012
[56] Dehzangi, A. et al. Impact of scaling base thickness on the performance of heterojunction phototransistors. Nanotechnology 28, 10LT01 (2017). doi: 10.1088/1361-6528/aa5849