[1] Lam, C. F. et al. Fiber optic communication technologies: what's needed for datacenter network operations. IEEE Commun. Mag. 48, 32-39 (2010). doi: 10.1109/MCOM.2010.5621962
[2] Taubenblatt, M. A. Optical interconnects for high-performance computing. J. Lightwave Technol. 30, 448-457 (2012). doi: 10.1109/JLT.2011.2172989
[3] Choquette, K. D. et al. Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 μm. Electron. Lett. 36, 1388-1390 (2000). doi: 10.1049/el:20000928
[4] Steinle, G., Riechert, H. & Egorov, A. Y. Monolithic VCSEL with InGaAsN active region emitting at 1.28 μm and CW output power exceeding 500 μW at room temperature. Electron. Lett. 37, 93-95 (2001). doi: 10.1049/el:20010098
[5] Lott, J. A. et al. InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 μm. Electron. Lett. 36, 1384-1385 (2000). doi: 10.1049/el:20000988
[6] Ledentsov, N. N. Long-wavelength quantum-dot lasers on GaAs substrates: from media to device concepts. IEEE J. Sel. Top. Quantum Electron. 8, 1015-1024 (2002). doi: 10.1109/JSTQE.2002.804236
[7] Ledentsov, N. N., Hopfer, F. & Bimberg, D. High-speed quantum-dot vertical-cavity surface-emitting laser. Proc. IEEE 95, 1741-1756 (2007). doi: 10.1109/JPROC.2007.900898
[8] Tong, C. Z., Xu, D. W. & Yoon, S. F. Theoretical investigation of 1.3 μm dots-under-a-well and dots-in-a-well InAs/GaAs quantum dot vertical-cavity surface-emitting lasers. J. Appl. Phys. 106, 033106 (2009). doi: 10.1063/1.3191660
[9] Tong, C. Z. et al. Temperature characteristics of 1.3-μm p-doped InAs-GaAs quantum-dot vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron. 15, 743-748 (2009). doi: 10.1109/JSTQE.2008.2010235
[10] Chang, T. Y. et al. Quantum-dot surface emitting distributed feedback lasers using indium-tin-oxide as top claddings. IEEE Photonics Technol. Lett. 28, 1633-1636 (2016). doi: 10.1109/LPT.2016.2562142
[11] Hsu, M.-Y., Lin, G. & Pan, C.-H. Electrically injected 1.3-μm quantum-dot photonic-crystal surface-emitting lasers. Opt. Express 25, 32697-32704 (2017). doi: 10.1364/OE.25.032697
[12] Huffaker, D. L. et al. 1.3 μm room-temperature GaAs-based quantum-dot laser. Appl. Phys. Lett. 73, 2564-2566 (1998). doi: 10.1063/1.122534
[13] Shchekin, O. B. & Deppe, D. G. 1.3 μm InAs quantum dot laser with To = 161 K from 0 to 80 ℃. Appl. Phys. Lett. 80, 3277-3279 (2002). doi: 10.1063/1.1476708
[14] Koyama, F. Recent advances of VCSEL photonics. J. Lightwave Technol. 24, 4502-4513 (2006). doi: 10.1109/JLT.2006.886064
[15] Imada, M. et al. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. Appl. Phys. Lett. 75, 316-318 (1999). doi: 10.1063/1.124361
[16] Meier, M. et al. Laser action from two-dimensional distributed feedback in photonic crystals. Appl. Phys. Lett. 74, 7-9 (1999). doi: 10.1063/1.123116
[17] Noda, S. et al. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123-1125 (2001). doi: 10.1126/science.1061738
[18] Miyai, E. et al. Photonics: lasers producing tailored beams. Nature 441, 946-946 (2006). doi: 10.1038/441946a
[19] Kurosaka, Y. et al. On-chip beam-steering photonic-crystal lasers. Nat. Photonics 4, 447-450 (2010). doi: 10.1038/nphoton.2010.118
[20] Williams, D. M. et al. Epitaxially regrown GaAs-based photonic crystal surface-emitting laser. IEEE Photonics Technol. Lett. 24, 966-968 (2012). doi: 10.1109/LPT.2012.2191400
[21] Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics 8, 406-411 (2014). doi: 10.1038/nphoton.2014.75
[22] Chua, S.-L. et al. Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point. Opt. Lett. 39, 2072-2075 (2014). doi: 10.1364/OL.39.002072
[23] Macomber, S. H. et al. Suface-emitting distributed feedback semiconductor-laser. Appl. Phys. Lett. 51, 472-474 (1987). doi: 10.1063/1.98397
[24] Nguyen, H. S. et al. Symmetry breaking in photonic crystals: on-demand dispersion from flatband to Dirac cones. Phys. Rev. Lett. 120, 066102 (2018). doi: 10.1103/PhysRevLett.120.066102
[25] Leykam, D. & Flach, S. Perspective: photonic flatbands. APL Photonics 3, 070901 (2018). doi: 10.1063/1.5034365
[26] Leykam, D., Andreanov, A. & Flach, S. Artificial flat band systems: from lattice models to experiments. Adv. Phys.: X 3, 1473052 (2017). doi: 10.1080/23746149.2018.1473052
[27] Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354-358 (2015). doi: 10.1038/nature14889
[28] Peng, C. et al. Three-dimensional coupled-wave theory analysis of a centered-rectangular lattice photonic crystal laser with a transverse-electric-like mode. Phys. Rev. B 86, 035108 (2012). doi: 10.1103/PhysRevB.86.035108
[29] Wang, Y. F. et al. Lateral cavity photonic crystal surface emitting laser based on commercial epitaxial wafer. Opt. Express 21, 8844-8855 (2013). doi: 10.1364/OE.21.008844