[1] Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics 13, 242-352 (2021). doi: 10.1364/AOP.411024
[2] Xu, Y. L. et al. 3D-printed facet-attached microlenses for advanced photonic system assembly. Light: Advanced Manufacturing 4, 3 (2023).
[3] Jalali, B. & Fathpour, S. Silicon photonics. Journal of Lightwave Technology 24, 4600-4615 (2006). doi: 10.1109/JLT.2006.885782
[4] Leuthold, J., Koos, K. & Freude, W. Nonlinear silicon photonics. Nature Photonics 4, 535-544 (2010). doi: 10.1038/nphoton.2010.185
[5] Roeloffzen, C. G. H. et al. Silicon nitride microwave photonic circuits. Optics Express 21, 22937-22961 (2013). doi: 10.1364/OE.21.022937
[6] Moss, D. J. et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nature Photonics 7, 597-607 (2013). doi: 10.1038/nphoton.2013.183
[7] Kish, F. A. et al. Current status of large-scale InP photonic integrated circuits. IEEE Journal of Selected Topics in Quantum Electronics 17, 1470-1489 (2011). doi: 10.1109/JSTQE.2011.2114873
[8] Nagarajan, R. et al. InP photonic integrated circuits. IEEE Journal of Selected Topics in Quantum Electronics 16, 1113-1125 (2010). doi: 10.1109/JSTQE.2009.2037828
[9] Honardoost, A., Abdelsalam, K. & Fathpour, S. Rejuvenating a versatile photonic material: thin‐film lithium niobate. Laser & Photonics Reviews 14, 2000088 (2020).
[10] Boes, A. et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser & Photonics Reviews 12, 1700256 (2018).
[11] Marpaung, D., Yao, J. P. & Capmany, J. Integrated microwave photonics. Nature Photonics 13, 80-90 (2019).
[12] Boes, A. et al. Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023). doi: 10.1126/science.abj4396
[13] Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101-104 (2018). doi: 10.1038/s41586-018-0551-y
[14] He, M. B. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nature Photonics 13, 359-364 (2019). doi: 10.1038/s41566-019-0378-6
[15] Liu, H. X. et al. Ultra-compact lithium niobate photonic chip for high-capacity and energy-efficient wavelength-division-multiplexing transmitters. Light:Advanced Manufacturing 4, 13 (2023).
[16] Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373-377 (2019). doi: 10.1038/s41586-019-1008-7
[17] He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138-1144 (2019). doi: 10.1364/OPTICA.6.001138
[18] Lin, Z. J. et al. High-performance polarization management devices based on thin-film lithium niobate. Light:Science & Applications 11, 93 (2022).
[19] Chen, J. Y. et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica 6, 1244-1245 (2019). doi: 10.1364/OPTICA.6.001244
[20] Lu, J. J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W. Optica 6, 1455-1460 (2019). doi: 10.1364/OPTICA.6.001455
[21] Shams-Ansari, A. et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9, 408-411 (2022). doi: 10.1364/OPTICA.448617
[22] Desiatov, B. & Lončar, M. Silicon photodetector for integrated lithium niobate photonics. Applied Physics Letters 115, 121108 (2019). doi: 10.1063/1.5118901
[23] Liang, D. & Bowers, J. E. Recent Progress in Heterogeneous III-V-on-Silicon Photonic Integration. Light:Advanced Manufacturing 2, 5 (2021).
[24] Xie, X. J. et al. High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator. Journal of Lightwave Technology 34, 73-78 (2016). doi: 10.1109/JLT.2015.2491258
[25] Hulme, J. et al. Fully integrated microwave frequency synthesizer on heterogeneous silicon-III/V. Optics Express 25, 2422-2431 (2017). doi: 10.1364/OE.25.002422
[26] Wang, Y. et al. High-power photodiodes With 65 GHz bandwidth heterogeneously integrated onto silicon-on-insulator Nano-waveguides. IEEE Journal of Selected Topics in Quantum Electronics 24, 6000206 (2018).
[27] Yu, F. X. et al. High-power high-speed MUTC waveguide photodiodes integrated on Si3N4/Si platform using micro-transfer printing. IEEE Journal of Selected Topics in Quantum Electronics 29, 3800106 (2023).
[28] Guo, X. W. et al. High-performance modified uni-traveling carrier photodiode integrated on a thin-film lithium niobate platform. Photonics Research 10, 1338-1343 (2022). doi: 10.1364/PRJ.455969
[29] Xu, M. Y. et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 9, 61-62 (2022). doi: 10.1364/OPTICA.449691
[30] Ito, H. et al. High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes. IEEE Journal of Selected Topics in Quantum Electronics 10, 709-727 (2004). doi: 10.1109/JSTQE.2004.833883
[31] Beling, A., Xie, X. J. & Campbell, J. C. High-power, high-linearity photodiodes. Optica 3, 328-338 (2016). doi: 10.1364/OPTICA.3.000328
[32] Wei, C. et al. >110 GHz high-power photodiode by flip-chip bonding. 2022 IEEE International Topical Meeting on Microwave Photonics (MWP). Orlando: IEEE, 2022, 1-4.