[1] |
Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics 13, 242-352 (2021). doi: 10.1364/AOP.411024 |
[2] |
Xu, Y. L. et al. 3D-printed facet-attached microlenses for advanced photonic system assembly. Light: Advanced Manufacturing 4, 3 (2023). |
[3] |
Jalali, B. & Fathpour, S. Silicon photonics. Journal of Lightwave Technology 24, 4600-4615 (2006). doi: 10.1109/JLT.2006.885782 |
[4] |
Leuthold, J., Koos, K. & Freude, W. Nonlinear silicon photonics. Nature Photonics 4, 535-544 (2010). doi: 10.1038/nphoton.2010.185 |
[5] |
Roeloffzen, C. G. H. et al. Silicon nitride microwave photonic circuits. Optics Express 21, 22937-22961 (2013). doi: 10.1364/OE.21.022937 |
[6] |
Moss, D. J. et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nature Photonics 7, 597-607 (2013). doi: 10.1038/nphoton.2013.183 |
[7] |
Kish, F. A. et al. Current status of large-scale InP photonic integrated circuits. IEEE Journal of Selected Topics in Quantum Electronics 17, 1470-1489 (2011). doi: 10.1109/JSTQE.2011.2114873 |
[8] |
Nagarajan, R. et al. InP photonic integrated circuits. IEEE Journal of Selected Topics in Quantum Electronics 16, 1113-1125 (2010). doi: 10.1109/JSTQE.2009.2037828 |
[9] |
Honardoost, A., Abdelsalam, K. & Fathpour, S. Rejuvenating a versatile photonic material: thin‐film lithium niobate. Laser & Photonics Reviews 14, 2000088 (2020). |
[10] |
Boes, A. et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser & Photonics Reviews 12, 1700256 (2018). |
[11] |
Marpaung, D., Yao, J. P. & Capmany, J. Integrated microwave photonics. Nature Photonics 13, 80-90 (2019). |
[12] |
Boes, A. et al. Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023). doi: 10.1126/science.abj4396 |
[13] |
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101-104 (2018). doi: 10.1038/s41586-018-0551-y |
[14] |
He, M. B. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nature Photonics 13, 359-364 (2019). doi: 10.1038/s41566-019-0378-6 |
[15] |
Liu, H. X. et al. Ultra-compact lithium niobate photonic chip for high-capacity and energy-efficient wavelength-division-multiplexing transmitters. Light:Advanced Manufacturing 4, 13 (2023). |
[16] |
Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373-377 (2019). doi: 10.1038/s41586-019-1008-7 |
[17] |
He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138-1144 (2019). doi: 10.1364/OPTICA.6.001138 |
[18] |
Lin, Z. J. et al. High-performance polarization management devices based on thin-film lithium niobate. Light:Science & Applications 11, 93 (2022). |
[19] |
Chen, J. Y. et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica 6, 1244-1245 (2019). doi: 10.1364/OPTICA.6.001244 |
[20] |
Lu, J. J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W. Optica 6, 1455-1460 (2019). doi: 10.1364/OPTICA.6.001455 |
[21] |
Shams-Ansari, A. et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9, 408-411 (2022). doi: 10.1364/OPTICA.448617 |
[22] |
Desiatov, B. & Lončar, M. Silicon photodetector for integrated lithium niobate photonics. Applied Physics Letters 115, 121108 (2019). doi: 10.1063/1.5118901 |
[23] |
Liang, D. & Bowers, J. E. Recent Progress in Heterogeneous III-V-on-Silicon Photonic Integration. Light:Advanced Manufacturing 2, 5 (2021). |
[24] |
Xie, X. J. et al. High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator. Journal of Lightwave Technology 34, 73-78 (2016). doi: 10.1109/JLT.2015.2491258 |
[25] |
Hulme, J. et al. Fully integrated microwave frequency synthesizer on heterogeneous silicon-III/V. Optics Express 25, 2422-2431 (2017). doi: 10.1364/OE.25.002422 |
[26] |
Wang, Y. et al. High-power photodiodes With 65 GHz bandwidth heterogeneously integrated onto silicon-on-insulator Nano-waveguides. IEEE Journal of Selected Topics in Quantum Electronics 24, 6000206 (2018). |
[27] |
Yu, F. X. et al. High-power high-speed MUTC waveguide photodiodes integrated on Si3N4/Si platform using micro-transfer printing. IEEE Journal of Selected Topics in Quantum Electronics 29, 3800106 (2023). |
[28] |
Guo, X. W. et al. High-performance modified uni-traveling carrier photodiode integrated on a thin-film lithium niobate platform. Photonics Research 10, 1338-1343 (2022). doi: 10.1364/PRJ.455969 |
[29] |
Xu, M. Y. et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 9, 61-62 (2022). doi: 10.1364/OPTICA.449691 |
[30] |
Ito, H. et al. High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes. IEEE Journal of Selected Topics in Quantum Electronics 10, 709-727 (2004). doi: 10.1109/JSTQE.2004.833883 |
[31] |
Beling, A., Xie, X. J. & Campbell, J. C. High-power, high-linearity photodiodes. Optica 3, 328-338 (2016). doi: 10.1364/OPTICA.3.000328 |
[32] |
Wei, C. et al. >110 GHz high-power photodiode by flip-chip bonding. 2022 IEEE International Topical Meeting on Microwave Photonics (MWP). Orlando: IEEE, 2022, 1-4. |