[1] |
Chen, P. et al. The promise and challenges of inverted perovskite solar cells. Chemical Reviews 124, 10623-10700 (2024). doi: 10.1021/acs.chemrev.4c00073 |
[2] |
Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249-253 (2018). doi: 10.1038/s41586-018-0576-2 |
[3] |
De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. The Journal of Physical Chemistry Letters 5, 1035-1039 (2014). doi: 10.1021/jz500279b |
[4] |
Maes, J. et al. Light absorption coefficient of CsPbBr3 perovskite nanocrystals. The Journal of Physical Chemistry Letters 9, 3093-3097 (2018). doi: 10.1021/acs.jpclett.8b01065 |
[5] |
Steirer, K. X. et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Letters 1, 360-366 (2016). doi: 10.1021/acsenergylett.6b00196 |
[6] |
Kim, G. W. & Petrozza, A. Defect tolerance and intolerance in metal-halide perovskites. Advanced Energy Materials 10, 2001959 (2020). doi: 10.1002/aenm.202001959 |
[7] |
Zhang, X., Turiansky, M. E. & van de Walle, C. G. Correctly assessing defect tolerance in halide perovskites. The Journal of Physical Chemistry C 124, 6022-6027 (2020). doi: 10.1021/acs.jpcc.0c01324 |
[8] |
Sun, C. J. et al. Perovskite light-emitting diodes toward commercial full-colour displays: progress and key technical obstacles. Light: Advanced Manufacturing 4, 272-291 (2023). |
[9] |
Mao, J. et al. Novel direct nanopatterning approach to fabricate periodically nanostructured perovskite for optoelectronic applications. Advanced Functional Materials 27, 1606525 (2017). doi: 10.1002/adfm.201606525 |
[10] |
Makarov, S. et al. Halide-perovskite resonant nanophotonics. Advanced Optical Materials 7, 1800784 (2019). doi: 10.1002/adom.201800784 |
[11] |
Kędziora, M. et al. Predesigned perovskite crystal waveguides for room-temperature exciton–polariton condensation and edge lasing. Nature Materials 23, 1515-1522 (2024). doi: 10.1038/s41563-024-01980-3 |
[12] |
Zhao, H. N. et al. Stable blue phosphorescent organic LEDs that use polariton-enhanced Purcell effects. Nature 626, 300-305 (2024). doi: 10.1038/s41586-023-06976-8 |
[13] |
Gao, Y. et al. Microsecond-response perovskite light-emitting diodes for active-matrix displays. Nature Electronics 7, 487-496 (2024). doi: 10.1038/s41928-024-01181-5 |
[14] |
Zhang, Q. P. et al. Light out-coupling management in perovskite LEDs—what can we learn from the past?. Advanced Functional Materials 30, 2002570 (2020). doi: 10.1002/adfm.202002570 |
[15] |
Zhao, B. D. et al. Light management for perovskite light-emitting diodes. Nature Nanotechnology 18, 981-992 (2023). doi: 10.1038/s41565-023-01482-4 |
[16] |
Furasova, A. et al. Nanophotonics for perovskite solar cells. Advanced Photonics Research 3, 2100326 (2022). doi: 10.1002/adpr.202100326 |
[17] |
Furasova, A. et al. Photovoltaic parameters improvement via size control of monodisperse Mie-resonant nanoparticles in perovskite solar cells. Chemical Engineering Journal 493, 152771 (2024). doi: 10.1016/j.cej.2024.152771 |
[18] |
Purkayastha, A. et al. Efficiency enhancement and life cycle assessment of 2D/3D mixed-dimensional tin perovskite plasmonic solar cells. ACS Applied Electronic Materials 6, 737-747 (2024). doi: 10.1021/acsaelm.3c01166 |
[19] |
Wang, Y. et al. Colorful efficient moiré-perovskite solar cells. Advanced Materials 33, 2008091 (2021). doi: 10.1002/adma.202008091 |
[20] |
Kang, S. M. et al. Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells. Small 12, 2443-2449 (2016). doi: 10.1002/smll.201600428 |
[21] |
Gholipour, B. et al. Organometallic perovskite metasurfaces. Advanced Materials 29, 1604268 (2017). doi: 10.1002/adma.201604268 |
[22] |
Wang, M. et al. Large-area periodic lead halide perovskite nanostructures for lenticular printing laser displays. Science China Chemistry 64, 629-635 (2021). doi: 10.1007/s11426-020-9919-6 |
[23] |
Masharin, M. A. et al. Giant ultrafast all-optical modulation based on exceptional points in exciton–polariton perovskite metasurfaces. ACS Nano 18, 3447-3455 (2024). doi: 10.1021/acsnano.3c10636 |
[24] |
Wang, H. L. et al. Nanoimprinted perovskite nanograting photodetector with improved efficiency. ACS Nano 10, 10921-10928 (2016). doi: 10.1021/acsnano.6b05535 |
[25] |
Feng, J. G. et al. Resonant perovskite solar cells with extended band edge. Nature Communications 14, 5392 (2023). doi: 10.1038/s41467-023-41149-1 |
[26] |
Peng, J. et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371, 390-395 (2021). doi: 10.1126/science.abb8687 |
[27] |
Solhtalab, N. et al. Efficiency improvement of half-tandem CIGS/perovskite solar cell by designing nano-prism nanostructure as the controllable light trapping. Energy Reports 8, 1298-1308 (2022). doi: 10.1016/j.egyr.2021.12.038 |
[28] |
Jung, E. D. et al. Aesthetic and efficient perovskite/Si tandem solar cells using luminescent down-shifting textured anti-reflection films. EcoMat 5, e12399 (2023). doi: 10.1002/eom2.12399 |
[29] |
Lloyd, V. J. et al. The actin cytoskeleton plays multiple roles in structural colour formation in butterfly wing scales. Nature Communications 15, 4073 (2024). doi: 10.1038/s41467-024-48060-3 |
[30] |
Orteu, A. & Jiggins, C. D. The genomics of coloration provides insights into adaptive evolution. Nature Reviews Genetics 21, 461-475 (2020). doi: 10.1038/s41576-020-0234-z |
[31] |
Baryshnikova, K. et al. Broadband antireflection with halide perovskite metasurfaces. Laser & Photonics Reviews 14, 2000338 (2020). |
[32] |
Wang, M., Yang, Z. W. & Zhang, C. Polarized photoluminescence from lead halide perovskites. Advanced Optical Materials 9, 2002236 (2021). doi: 10.1002/adom.202002236 |
[33] |
Nguyen, V. A. et al. Micrometer-resolution fluorescence and lifetime mappings of CsPbBr3 nanocrystal films coupled with a TiO2 grating. The Journal of Physical Chemistry Letters 15, 11291-11299 (2024). doi: 10.1021/acs.jpclett.4c02546 |
[34] |
Birnbaum, M. Semiconductor surface damage produced by ruby lasers. Journal of Applied Physics 36, 3688-3689 (1965). doi: 10.1063/1.1703071 |
[35] |
Sipe, J. E. et al. Laser-induced periodic surface structure. I. Theory. Physical Review B 27, 1141-1154 (1983). |
[36] |
Vorobyev, A. Y. & Guo, C. L. Direct femtosecond laser surface nano/microstructuring and its applications. Laser & Photonics Reviews 7, 385-407 (2013). |
[37] |
Bonse, J. , Kirner, S. V. & Krüger, J. Laser-induced periodic surface structures (LIPSS). in Handbook of Laser Micro-and Nano-Engineering (ed Sugioka, A. ) (Cham: Springer, 2021), 879-936. |
[38] |
Dusser, B. et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Optics Express 18, 2913-2924 (2010). doi: 10.1364/OE.18.002913 |
[39] |
Ionin, A. A. et al. Femtosecond laser color marking of metal and semiconductor surfaces. Applied Physics A 107, 301-305 (2012). doi: 10.1007/s00339-012-6849-y |
[40] |
Ionin, A. A. et al. Direct femtosecond laser fabrication of antireflective layer on GaAs surface. Applied Physics B 111, 419-423 (2013). doi: 10.1007/s00340-013-5350-4 |
[41] |
Bonse, J. et al. Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel. Applied Surface Science 336, 21-27 (2015). doi: 10.1016/j.apsusc.2014.08.111 |
[42] |
Kuchmizhak, A. et al. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures. Scientific Reports 6, 19410 (2016). doi: 10.1038/srep19410 |
[43] |
Geng, J. et al. Controllable generation of large-scale highly regular gratings on Si films. Light: Advanced Manufacturing 2, 274-282 (2021). |
[44] |
Xu, K. M. et al. Ultrafast laser-induced decomposition for selective activation of GaAs. Light: Advanced Manufacturing 5, 241-248 (2024). |
[45] |
Manshina, A. A. et al. The second laser revolution in chemistry: emerging laser technologies for precise fabrication of multifunctional nanomaterials and nanostructures. Advanced Functional Materials 34, 2405457 (2024). doi: 10.1002/adfm.202405457 |
[46] |
van Driel, H. M., Sipe, J. E. & Young, J. F. Laser-induced periodic surface structure on solids: a universal phenomenon. Physical Review Letters 49, 1955-1958 (1982). doi: 10.1103/PhysRevLett.49.1955 |
[47] |
Lopez-Santos, C. et al. Anisotropic resistivity surfaces produced in ITO films by laser-induced nanoscale self-organization. Advanced Optical Materials 9, 2001086 (2021). doi: 10.1002/adom.202001086 |
[48] |
Gao, Y. F. et al. Picosecond laser-induced periodic surface structures (LIPSS) on crystalline silicon. Surfaces and Interfaces 19, 100538 (2020). doi: 10.1016/j.surfin.2020.100538 |
[49] |
Sartori, A. F. et al. Laser-induced periodic surface structures (LIPSS) on heavily boron-doped diamond for electrode applications. ACS Applied Materials & Interfaces 10, 43236-43251 (2018). |
[50] |
Borodaenko, Y. et al. Liquid-assisted laser nanotexturing of silicon: onset of hydrodynamic processes regulated by laser-induced periodic surface structures. Advanced Materials Technologies 9, 2301567 (2024). doi: 10.1002/admt.202301567 |
[51] |
Tsibidis, G. D. et al. Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions. Physical Review B 86, 115316 (2012). doi: 10.1103/PhysRevB.86.115316 |
[52] |
Tsibidis, G. D., Fotakis, C. & Stratakis, E. From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures. Physical Review B 92, 041405 (2015). doi: 10.1103/PhysRevB.92.041405 |
[53] |
Livakas, N., Skoulas, E. & Stratakis, E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing. Opto-Electronic Advances 3, 190035 (2020). doi: 10.29026/oea.2020.190035 |
[54] |
Chen, J. et al. Carrier dynamic process in all-inorganic halide perovskites explored by photoluminescence spectra. Photonics Research 9, 151-170 (2021). doi: 10.1364/PRJ.410290 |
[55] |
Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nature Communications 7, 13941 (2016). doi: 10.1038/ncomms13941 |
[56] |
Yi, A. et al. Room-temperature-processed perovskite solar cells surpassing 24% efficiency. Joule 8, 2087-2104 (2024). doi: 10.1016/j.joule.2024.04.002 |
[57] |
Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444-450 (2021). doi: 10.1038/s41586-021-03964-8 |
[58] |
Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Letters 2, 1539-1548 (2017). doi: 10.1021/acsenergylett.7b00276 |
[59] |
Chen, X. T. et al. Charge transfer kinetics in halide perovskites: on the constraints of time-resolved spectroscopy measurements. ACS Energy Letters 9, 3187-3203 (2024). doi: 10.1021/acsenergylett.4c00736 |
[60] |
Furasova, A. et al. Enhancing photovoltaic performance of hybrid perovskite solar cells utilizing GaP nanowires. ACS Applied Energy Materials 6, 3696-3704 (2023). |
[61] |
Yang, Y. R. et al. Solution-processed micro-nanostructured electron transport layer via bubble-assisted assembly for efficient perovskite photovoltaics. Advanced Materials 36, 2408448 (2024). doi: 10.1002/adma.202408448 |
[62] |
Jiang, X. Q. et al. Unraveling the role of electron-withdrawing molecules for highly efficient and stable perovskite photovoltaics. Angewandte Chemie 137, e202414128 (2025). doi: 10.1002/ange.202414128 |
[63] |
Di Girolamo, D. et al. Breaking 1.7 V open circuit voltage in large area transparent perovskite solar cells using interfaces passivation. Advanced Energy Materials 14, 2400663 (2024). |
[64] |
Baeva, M. et al. Enhancing the CsPbBr3 PeLEC properties via PDMS/PMHS double-layer polymer encapsulation and high relative humidity stress-aging. Journal of Materials Chemistry C 11, 15261-15275 (2023). doi: 10.1039/D3TC01370G |
[65] |
Cherepakhin, A. et al. Advanced laser nanofabrication technologies for perovskite photonics. Advanced Optical Materials 12, 2302782 (2024). doi: 10.1002/adom.202302782 |